2023 Vol. 56, No. 2
Article Contents

ZHANG Huan, CHEN Yingtao, TAO Wei, CHEN Tao, YU Wenxin, AI Huihui. 2023. Sandbox Physical Simulation Experiment of Extensional Structure under Different Stretching Modes and Speeds. Northwestern Geology, 56(2): 327-336. doi: 10.12401/j.nwg.2022023
Citation: ZHANG Huan, CHEN Yingtao, TAO Wei, CHEN Tao, YU Wenxin, AI Huihui. 2023. Sandbox Physical Simulation Experiment of Extensional Structure under Different Stretching Modes and Speeds. Northwestern Geology, 56(2): 327-336. doi: 10.12401/j.nwg.2022023

Sandbox Physical Simulation Experiment of Extensional Structure under Different Stretching Modes and Speeds

More Information
  • Sandbox structural physics simulation experiment is an efficient method to simulate the deformation process, genesis mechanism and dynamic process of natural structural deformation in laboratory. Factors affecting the rate of rock deformation and the mode of action of forces are the main factors affecting the results of physical simulation experiments of extensional tectonics and tectonic morphology. Based on this, in order to investigate the effects of tensile speed and tensile mode (mode of the stress action) on extensional structural deformation characteristics in sandbox physical simulation experiment. This article is based on existing research, three different stretching speeds of high (0.01 mm/s), medium (0.001 mm/s) and low (0.000 5 mm/s) are combined with two different stretching methods of unidirectional and bidirectional stretching, and six sets of experiments are designed for comparative study. The results show that: ① Tensile velocity has no significant effect on the final morphology of the sand body, but has a certain influence on the development process of the fault, while the influence of the tensile mode on both the development process and the final morphology of the fault is more significant, and the velocity of the sand body increases to a certain high value before the formation of the fault and decreases rapidly after the formation of the fault. ② The sand body of the unidirectional stretching model eventually forms an asymmetric graben tectonic feature. The sand bodies of the two–way stretching model eventually form a typical graben tectonic feature. ③ Asymmetric graben structures are usually formed in a relatively stretched or differentially stretched environment, with a series of stepwise positive faults on the relatively stretched side and a large positive fault on the relatively fixed side, and the location of the pre–existing structure often determines the initial location of the later structure development. This understanding lays the foundation for the model setting and parameter selection in sandbox analogue modeling of the extensional structure.

  • 加载中
  • 白鸾羲. 鄂尔多斯周缘上更新统角度不整合面的时代厘定及其构造意义[D]. 北京: 中国地震局地质研究所, 2021

    Google Scholar

    BAI Luanxi. Timing of angular unconformities in Upper Pleistocene around the Ordos Block and its tectonic significance: case studies in the Hetao Basin and Shanxi Graben system[D]. Beijing: Institute of Geophysics, China Seismological Bureau, 2021.

    Google Scholar

    陈兴鹏. 伸展、走滑应力叠加、配比条件下构造变形特征的物理模拟实验研究[D]. 东营: 中国石油大学(华东), 2017

    Google Scholar

    CHEN Xingpeng. Structural Deformation Characteristic Analysis with Superposition and Ratios of Extensional and Strike-Slip Stress: Insights from Physical Analog Experiments[D]. Dongying: China University of Petroleum (East China), 2017.

    Google Scholar

    陈竹新, 雷永良, 贾东, 等. 构造变形物理模拟与构造建模技术及应用[M]. 北京: 科学出版社, 2019

    Google Scholar

    CHEN Zhuxin, LEI Yongliang, JIA Dong, et al. Physical Analog and Structural Modeling Techniques and Applications [M]. Beijing: Science Press, 2019.

    Google Scholar

    邓宾, 赵高平, 万元博, 等. 褶皱冲断带构造砂箱物理模型研究进展[J]. 大地构造与成矿学, 2016, 40(03): 446-464 doi: 10.16539/j.ddgzyckx.2016.03.004

    CrossRef Google Scholar

    DENG Bin, ZHAO Gaoping, WAN Yuanbo, et al. A Review of Tectonic Sandbox Modeling of Fold-and-thrust Belt [J]. Geotectonicaet Metallogenia, 2016, 40(03): 446-464. doi: 10.16539/j.ddgzyckx.2016.03.004

    CrossRef Google Scholar

    胡林, 李才, 金秋月, 等. 伸展背景下塑性地层对断裂发育特征影响的实验分析[J]. 地球科学, 2021, 46(05): 1749-1757

    Google Scholar

    HU Lin, LI Cai, JIN Qiuyue, et al. Experimental Analysis on Influence of Plastic Formation on Characteristics of Fault Development under Extensional Stress [J]. Earth Science, 2021, 46(05): 1749-1757.

    Google Scholar

    赖冬. 莺歌海盆地底辟构造特征及其油气意义[D]. 成都: 成都理工大学, 2019

    Google Scholar

    LAI Dong. Geometry and kinematics of diapir and its implication in the Yinggehai Basin: insights from analogue experiments [D]. Chengdu: Chengdu University of Technology, 2019.

    Google Scholar

    罗强, 何宇, 黄家强, 等. 川西北前陆扩展砂箱物理模拟及其深层晚期扩展变形特征[J]. 石油实验地质, 2020, 42(06): 1031-1040

    Google Scholar

    LUO Qiang, HE Yu, HUANG Jiaqiang, et al. Analogue experiments on the piggyback propagation in northwestern Sichuan and latest propagation in its deeps [J]. Petroleum Geology & Experiment, 2020, 42(06): 1031-1040.

    Google Scholar

    孟元库, 汪新文, 李波, 等. 华北克拉通中部沁水盆地热演化史与山西高原中新生代岩石圈构造演化[J]. 西北地质, 2015, 48(02): 159-168 doi: 10.3969/j.issn.1009-6248.2015.02.016

    CrossRef Google Scholar

    MENG Yuanku, WANG Xinwen, LI Bo, et al. Thermal evolution history of Qinshui basin in the central north China Craton and Mesozoic-cenozoic lithospheric tectonic evolution of Shanxi plateau [J]. Northwestern Geology, 2015, 48(02): 159-168. doi: 10.3969/j.issn.1009-6248.2015.02.016

    CrossRef Google Scholar

    潘文华. 双滑脱层褶皱-冲断带变形场演化规律的物理模拟研究[D]. 北京: 中国石油大学(北京), 2020

    Google Scholar

    PAN Wenhua. Study on the evolution law of deformation field of fold-thrust belt with double detachments: Insight from analogue modelling[D]. Beijing: China University of Petroleum (Beijing), 2020.

    Google Scholar

    漆家福, 吴景富, 马兵山, 等. 南海北部珠江口盆地中段伸展构造模型及其动力学[J]. 地学前缘, 2019, 26(02): 203-221 doi: 10.13745/j.esf.sf.2019.1.16

    CrossRef Google Scholar

    QI Jiafu, WU Jingfu, MA Binshan, et al. The structural model and dynamics concerning middle section, Pearl River Mouth Bsin in north margin of South China Sea [J]. Earth Science Frontiers, 2019, 26(02): 203-221. doi: 10.13745/j.esf.sf.2019.1.16

    CrossRef Google Scholar

    瞿伟, 王运生, 徐超, 等. 渭河盆地构造应力场有限元数值模拟[J]. 武汉大学学报(信息科学版), 2017, 42(12): 1749-1755

    Google Scholar

    QU Wei, WANG Yunsheng, XU Chao, et al. Tectonic Stress Field of the Weihe Basin Using the Finite Element Method [J]. Geomatics and Information Science of Wuhan University, 2017, 42(12): 1749-1755.

    Google Scholar

    谢玉洪. 浅表走滑构造系统砂箱物理模拟研究进展[J]. 大地构造与成矿学, 2021, 45(06): 1127-1145 doi: 10.16539/j.ddgzyckx.2021.02.015

    CrossRef Google Scholar

    XIE Yuhong. A Review on Analogue Modelling of Strike-slip Tectonics [J]. Geotectonica et Metallogenia, 2021, 45(06): 1127-1145. doi: 10.16539/j.ddgzyckx.2021.02.015

    CrossRef Google Scholar

    赵仕俊, 赵锡奎, 杨少春. 地质构造物理模拟实验模型的相似分析[J]. 西北地质, 2005(04): 14-18 doi: 10.3969/j.issn.1009-6248.2005.04.003

    CrossRef Google Scholar

    ZHAO Shijun, ZHAO Xikui, YANG Shaochun. Similar analysis of geological structure physical model [J]. Northwestern Geology, 2005(04): 14-18. doi: 10.3969/j.issn.1009-6248.2005.04.003

    CrossRef Google Scholar

    Ahmad M I, Dubey A K, Toscani G, et al. Kinematic evolution of thrusts wedge and erratic line length balancing: insights from deformed sandbox models [J]. International Journal of Earth Sciences, 2014, 103(1): 329-347. doi: 10.1007/s00531-013-0947-8

    CrossRef Google Scholar

    Asensio E, Khazaradze G, Echeverria A, et al. GPS studies of active deformation in the Pyrenees [J]. Geophysical Journal International, 2012, 190(2): 913-921. doi: 10.1111/j.1365-246X.2012.05525.x

    CrossRef Google Scholar

    Deng Bin, Jiang Lei, Zhao Gaoping, et al. Insights into the velocity-dependent geometry and internal strain in accretionary wedges from analogue models [J]. Geological Magazine, 2018, 155(5): 1089-1104. doi: 10.1017/S0016756816001266

    CrossRef Google Scholar

    Deng Bin, Koyi H, Fan Caiwei, et al. Modelling asymmetric deformation along a curved strike-slip basement-fault system[J]. International Journal of Earth Sciences, 2021, 110(1): 165-182. doi: 10.1007/s00531-020-01943-4

    CrossRef Google Scholar

    Erdős Z, Huismans R S, van der Beek P, et al. Extensional inheritance and surface processes as controlling factors of mountain belt structure[J]. Journal of Geophysical Research: Solid Earth, 2014, 119(12): 9042-9061. doi: 10.1002/2014JB011408

    CrossRef Google Scholar

    Fan Xiaogen, Jia Dong, Yin Hongwei, et al. Analogue modeling of the northern Longmen Shan thrust belt (eastern margin of the Tibetan plateau) and strain analysis based on Particle Image Velocimetry[J]. Journal of Asian Earth Sciences, 2020, 198: 13.

    Google Scholar

    Hagke C V, Reber J, Philippon M. Cutting-Edge Analogue Modeling Techniques Applied to Study Earth Systems[J]. Frontiers in Earth Science, 2019, 7: 265. doi: 10.3389/feart.2019.00265

    CrossRef Google Scholar

    Hatzfeld D, Molnar P. Comparisons of the kinematics and deep structures of the Zagros and Himalaya and of the Iranian and Tibetan plateaus and geodynamic implications [J]. Reviews of Geophysics, 2010, 48, RG2005.

    Google Scholar

    Lohrmann J, Kukowski N, Adam J, et al. The impact of analogue material properties on the geometry, kinematics, and dynamics of convergent sand wedges [J]. Journal of Structural Geology, 2003, 25(10): 1691-1711. doi: 10.1016/S0191-8141(03)00005-1

    CrossRef Google Scholar

    Reber J E, Cooke M L, Dooley T P. What model material to use? A Review on rock analogs for structural geology and tectonics[J]. Earth-Science Reviews, 2020, 202: 103-107.

    Google Scholar

    Toscani G, Bonini L, Ahmad M I, et al. Opposite verging chains sharing the same foreland: Kinematics and interactions through analogue models (Central Po Plain, Italy)[J]. Tectonophysics, 2014, 633: 268-282. doi: 10.1016/j.tecto.2014.07.019

    CrossRef Google Scholar

    Yan D P, Xu Y B, Dong Z B, et al. Fault-related fold styles and progressions in fold-thrust belts: Insights from sandbox modeling[J]. Journal of Geophysical Research-Solid Earth, 2016, 121(3): 2087-2111. doi: 10.1002/2015JB012397

    CrossRef Google Scholar

    Yan J, Hu J, Gong W, et al. Late Cenozoic magnetostratigraphy of the Yuncheng Basin, central North China Craton and its tectonic implications[J]. Geological Journal, 2020, 55(11): 7415-7428. doi: 10.1002/gj.3744

    CrossRef Google Scholar

    Yu S B, Chen H Y, Kuo L C. Velocity field of GPS stations in the Taiwan area [J]. Tectonophysics, 1997, 274(1-3): 41-59. doi: 10.1016/S0040-1951(96)00297-1

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(1)

Article Metrics

Article views(1083) PDF downloads(47) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint