Citation: | WANG Hanhui, TANG Li, YANG Bochang, TANG Jigen, ZHANG Yansheng, GUO Jun, FENG Jiaying, SHENG Yuanming. 2023. Geochemical Characteristics of Calcite and Bastnäsite U–Th–Pb Age of the Huangshui’an Carbonatite–hosted Mo–REE Deposit, Eastern Qinling. Northwestern Geology, 56(1): 48-62. doi: 10.12401/j.nwg.2022012 |
The Huangshui’an deposit, located in Xiong’ershan ore concentration area in the southern margin of the North China Craton, is one of the typical carbonatite–hosted Mo–REE deposit in the East Qinling Mo metallogenic belts. The Mo–REE ore bodies of the Huangshui’an deposit mainly are hosted in carbonatite which occur as veins and cryptoexplosive breccia intrusions in the Taihua Group. Based on the study of trace elements and C–O isotopic compostion of calcite, and bastnäsite U–Th–Pb dating, we discuss the origin of carbonatite, metallogenic age and tectonic setting, which provide constraints for tectonic evolution and mineralization in the East Qinling belt. The trace elements of calcite are characterized by enrichment of large ion lithophile elements and depletion of high field strength elements, and are enriched in LREE (LREE/HREE=3.08~10.33). The δ13 CV-PDB values of calcite ranging from −4.11‰ to −5.62‰ and δ18 OV-SMOW values ranging from 6.40‰ to 7.62‰ indicate the characteristics of primary mantle–derived carbonatite. The weighted average age of U–Th–Pb dating of bastnäsite is 213.5±2.9 Ma, representing the age of REE mineralization in the Huangshui'an deposit. Based on diagenetic and metallogenic age and available isotopic ages, we propose that the metallogenic age of the Huangshui’an deposit is Late Triassic. The Huangshui’an carbonatite–hosted deposit was formed in the post–collisional setting of the Qinling orogenic belt. The partial melting of Mo–fertile lower crust and enriched mantle formed the carbonatite magma, and the recycling of crustal material is one of the key factors for the formation of carbonatite–hosted Mo–REE mineralization.
曹华文, 李光明, 张林奎, 等. 西藏山南列麦始新世花岗岩独居石U-Th-Pb年龄及地质意义[J]. 沉积与特提斯地质, 2020, 40(2): 31-42. CAO Huawen, LI Guangming, ZHANG Lingkui, et al. Monazite U-Th-Pb age of Liemai Eocene granites in the southern Tibet and its geological implications[J]. Sedimentary Geology and Tethyan Geology, 2020, 40(2), 31-42. |
曹晶. 东秦岭黄水庵碳酸岩型钼矿床成矿作用研究[D]. 北京: 中国地质大学(北京), 2018 CAO Jing. Mineralization of the Huangshui’an carbonatite Mo deposit in East Qinling[D]. Beijing: China University of Geosciences (Beijing), 2018. |
曹晶, 叶会寿, 李正远, 等. 东秦岭磨沟碱性岩体年代学、地球化学及岩石成因[J]. 岩石矿物学杂志, 2015, 34(05): 665-684 doi: 10.3969/j.issn.1000-6524.2015.05.006 CAO Jing, YE Huishou, LI Zhengyuan, et al. Geochronology, geochemistry and petrogenesis of the Mogou alkalic pluton in the East Qinling orogenic belt [J]. Acta Petrologica et Mineralogica, 2015, 34(05): 665-684. doi: 10.3969/j.issn.1000-6524.2015.05.006 |
曹晶, 叶会寿, 李洪英, 等. 河南嵩县黄水庵碳酸岩脉型钼(铅)矿床地质特征及辉钼矿Re-Os同位素年龄[J]. 矿床地质, 2014, 33(1): 53-69 doi: 10.3969/j.issn.0258-7106.2014.01.004 CAO Jing, YE Huishou, LI Hongying, et al. Geological characteristics and molybdenite Re-Os isotopic dating of Huangshuian carbonatite vein-type Mo(Pb) deposit in Songxian County, Henan Province[J]. Mineral Deposits, 2014, 33(1): 53-69. doi: 10.3969/j.issn.0258-7106.2014.01.004 |
曹晶, 叶会寿, 陈小丹, 等. 豫西雷门沟钼矿区花岗斑岩年代学、地球化学和Sr-Nd-Hf同位素研究[J]. 矿床地质, 2016, 35(4): 677-695 doi: 10.16111/j.0258-7106.2016.04.004 CAO Jing, YE Huishou, CHEN Xiaodan, et al. Geochronology, geochemistry and Sr-Nd-Hf isotopic compositions of granite porphyry in Leimengou Mo deposit, western Henan Province[J]. Mineral Deposits, 2016, 35(4): 677-695. doi: 10.16111/j.0258-7106.2016.04.004 |
付鑫宁, 唐利, 姚梅青, 等. 东秦岭黄水庵钼矿床的碳酸岩成因与地质意义: 来自痕量元素和Sr-Nd-Pb同位素的约束[J]. 成都理工大学学报(自然科学版), 2021, 48(5): 525-538 FU Xinning, TANG Li, YAO Meiqing, et al. Genesis and geological significance of the carbonatite in the Huangshui'an Mo deposit in Eastern Qinling area of China: Constraints from trace elements and Sr-Nd-Pb isotopes[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2021, 48(5): 525-538. |
黄典豪, 侯增谦, 杨志明, 等. 东秦岭钼矿带内碳酸岩脉型钼(铅)矿床地质-地球化学特征、成矿机制及成矿构造背景[J]. 地质学报, 2009, 83(12): 1968-1984 doi: 10.3321/j.issn:0001-5717.2009.12.012 HUANG Dianhao, HOU Zengqian, YANG Zhiming, et al. Geological and Geochemical Characteristics, Metallogenetic Mechanism and Tectonic Setting of Carbonatite Vein-Type Mo(Pb)Deposits in the East Qinling Molybdenum Ore Belt[J]. Acta Geologica Sinica, 2009, 83(12): 1968-1984. doi: 10.3321/j.issn:0001-5717.2009.12.012 |
黄卉, 潘家永, 洪斌跃, 等. 陕西华阳川铀-多金属矿床晶质铀矿电子探针U-Th-Pb化学定年及其地质意义[J]. 矿床地质, 2020, 39(2): 351-368 doi: 10.16111/j.0258-7106.2020.02.009 HUANG Hui, PAN Jiayong, HONG Binyue, et al. EPMA chemical U-Th-Pb dating of uraninite in Huayangchuan U-polymetallic deposit of Shaanxi Province and its geological significance[J]. Mineral Deposits, 2020, 39(2): 351-368. doi: 10.16111/j.0258-7106.2020.02.009 |
胡乐, 李以科, 孙盛, 等. 内蒙古白云鄂博地区识别出新火成碳酸岩[J/OL]. 中国地质, 2021: 1-23. HU Le, LI Yike, SUN Sheng, et al. Identification of new igneous carbonatites in the Bayan Obo area, Inner Mongolia[J/OL], Geology in China, 2021: 1-23. |
李诺, 陈衍景, 张辉, 等. 东秦岭斑岩钼矿带的地质特征和成矿构造背景[J]. 地学前缘, 2007, 5: 186-198. LI Nuo, CHEN Yanjing, ZHANG Hui, et al. Molybdenum deposits in East Qinling[J]. Earth Science Frontiers, 2007, 5: 186-198. |
李永峰. 豫西熊耳山地区中生代花岗岩类时空演化与钼(金)成矿作用[D]. 北京: 中国地质大学(北京), 2005 LI Yongfeng. The Temporal-spatial Evolution of Mesozoic Granitoids in Xiong' ershan Area and Their Relationship to Molybdenum-gold Mineralization[D]. Beijing: China University of Geosciences (Beijing), 2005. |
梁涛, 白凤军, 罗照华, 等. 豫西熊耳山斑竹寺花岗斑岩岩体锆石U-Pb定年及地质意义[J]. 西北地质, 2014, 47(2): 41-50 doi: 10.3969/j.issn.1009-6248.2014.02.006 LIANG Tao, BAI Fengjun, LUO Zhaohua, et al. LA-ICP-MS Zircon U-Pb Dating and Its Geological Implications of Banzhusi Granitic Porphyry in Xiongershan of Western Henan Province[J]. Northwestern Geology, 2014, 47(2): 41-50. doi: 10.3969/j.issn.1009-6248.2014.02.006 |
卢欣祥, 罗照华, 黄凡, 等. 秦岭-大别山地区钼矿类型与矿化组合特征[J]. 中国地质, 2011, 38(6): 1518-1535 doi: 10.3969/j.issn.1000-3657.2011.06.012 LU Xinxiang, LUO Zhaofan, HUANG Fan, et al. Mo deposit types and mineralization assemblage characteristics in QinlingDabie Mountain area[J]. Geology in China, 2011, 38(6): 1518-1535. doi: 10.3969/j.issn.1000-3657.2011.06.012 |
卢欣祥, 尉向东, 肖庆辉, 等. 秦岭环斑花岗岩的年代学研究及其意义[J]. 高校地质学报, 1999, 5(4): 372 – 377 LU Xinxiang, WEI Xiangdong, XIAO Qinghui, et al. Geochronological studies of rapakivi granites in Qingling and its geological implication[J]. Geological Journal of China Universities, 1999, 5(4): 372-377. |
罗涛, 赵赫, 张文, 等. 激光剥蚀电感耦合等离子体质谱非基体匹配氟碳铈矿U-Th-Pb定年[J]. 中国科学: 地球科学, 2021, 51(06): 874-883 doi: 10.1360/N072020-0267 LUO Tao, ZHAO He, ZHANG Wen, et al. Non-matrix-matched analysis of U-Th-Pb geochronology of bastnasite by laser ablation inductively coupled plasma mass spectrometry[J]. Scientia Sinica (Terrae), 2021, 51(06): 874-883. doi: 10.1360/N072020-0267 |
罗铮娴, 黄小龙, 王雪, 等. 华北克拉通崤山太华群TTG质片麻岩年代学与地球化学特征: 岩石成因机制探讨[J]. 大地构造与成矿学, 2018, 42(2): 332-347 LUO Zhengxian, HUANG Xiaolong, WANG Xue, et al. Geochronology and Geochemistry of the TTG Gneisses from the Taihua Group in the Xiaoshan Area, North China Craton: Constraints on Petrogenesis[J]. Geotectonica et Metallogenia, 2018, 42(2): 332-347. |
毛景文, 谢桂青, 张作衡, 等. 中国北方中生代大规模成矿作用的期次及其地球动力学背景[J]. 岩石学报, 2005, 21(1): 169-188 MAO Jingwen, XIE Guiqing, ZHANG Zuoheng, et al. Mesozoic large-scale metallogenic pulses in North China and corresponding geodynamic settings[J]. Acta Petrologica Sinica, 2005, 21(1): 169-188. |
毛帆, 裴先治, 李瑞保, 等. 扬子板块西北缘碧口微地块南华系碎屑锆石U-Pb年龄及其物源示踪[J]. 沉积与特提斯地质, 2021, 41(1): 41-57 doi: 10.19826/j.cnki.1009-3850.2020.10009 MAO Fang, PEI Xianzhi, LI Ruibao, et al. The LA-ICP-MS U-Pb dating of detrital zircons from the Nanhua System in Bikou Terrane, northwestern margin of Yangtze Block[J]. Sedimentary Geology and Tethyan Geology, 2021, 41(1): 41-57. doi: 10.19826/j.cnki.1009-3850.2020.10009 |
齐进英. 东秦岭太华群变质岩系及其形成条件[J]. 地质科学, 1992, 112: 94-107 QI Jinying. Metamorphic rock series of Taihua Group and conditions for its formation in Eastern Qinling[J]. Chines Journal of Geology, 1992, 112: 94-107 |
秦江锋. 秦岭造山带晚三叠世花岗岩类成因机制及深部动力学背景[D]. 西安: 西北大学, 2010 QING Jiangfeng. Petrogenesis and Geodynamic Implications of the Late-Triassic Granitoids from the Qinling Orogenic Belt[D]. Xi’an: Northwest University, 2010. |
邱啸飞, 蔡应雄, 江拓, 等. 庙垭铌-稀土矿床的热液蚀变作用: 来自碳酸岩碳-氧同位素的制约[J]. 华南地质与矿产, 2017, 33(03): 275-281 doi: 10.3969/j.issn.1007-3701.2017.03.008 QIU Xiaofei, CAI Yingxiong, JIANG Tuo, et al. Hydrothermal alteration for the Miaoya Nb-REE deposit: constraints from C-O isotope composition of the carbonatite[J]. Geology and Mineral Resources of South China, 2017, 33(03): 275-281. doi: 10.3969/j.issn.1007-3701.2017.03.008 |
宋文磊, 许成, 刘琼, 等. 火成碳酸岩的实验岩石学研究及对地球深部碳循环的意义[J]. 地质论评, 2012, 4: 726-744 doi: 10.3969/j.issn.0371-5736.2012.04.014 SONG Wenlei, XU Chen, LIU Qiong, et al. Experimental Petrological Study of Carbonatite and Its Significances on the Earth Deep Carbon Cycle[J]. Geological Review, 2012, 4: 726-744. doi: 10.3969/j.issn.0371-5736.2012.04.014 |
王佳营, 李志丹, 张祺, 等. 东秦岭地区碳酸岩型钼-铀多金属矿床成矿时代: 来自LA-ICP-MS独居石U-Pb和辉钼矿Re-Os年龄的证据[J]. 地质学报, 2020, 94(10): 2946-2964 doi: 10.3969/j.issn.0001-5717.2020.10.011 WANG JiaYing, LI Zhidan, ZHANG Qi, et al. Metallogenic epoch of the carbonatite-type Mo-U polymetallic deposit in east Qinling: evidence from the monazite LA-ICP-MS U-Pb and molybdenite Re-Os isotopic dating[J]. Acta Geologica Sinica, 2020, 94(10): 2946-2964. doi: 10.3969/j.issn.0001-5717.2020.10.011 |
姚书振, 周宗桂, 吕新彪, 等. 秦岭成矿带成矿特征和找矿方向[J]. 西北地质, 2006, 39(2): 156-178 doi: 10.3969/j.issn.1009-6248.2006.02.010 YAO Shunzhen, ZHOU Zonggui, LV Xinbiao, et al. Mineralization Characteristics and Prospecting Potential in the Qinling Metallogenic Belt[J]. Northwestern Geology, 2006, 39(2): 156-178. doi: 10.3969/j.issn.1009-6248.2006.02.010 |
张成立, 王涛, 王晓霞. 秦岭造山带早中生代花岗岩成因及其构造环境[J]. 高校地质学报, 2008, 3: 304-316 doi: 10.3969/j.issn.1006-7493.2008.03.003 ZHANG Chengli, WANG Tao, WANG Xiaoxia. Origin and Tectonic Setting of the Early Mesozoic Granitoids in Qinling Orogenic Belt[J]. Geological Journal of China Universities, 2008, 3: 304-316. doi: 10.3969/j.issn.1006-7493.2008.03.003 |
张传昱, 李文昌, 余海军, 等. 云南水头山铅锌矿床闪锌矿Rb-Sr定年及其地质意义[J]. 沉积与特提斯地质, 2022, 42(1): 122-132 doi: 10.19826/j.cnki.1009-3850.2022.01006 ZHANG Chuanyu, LI Wenchang, YU Haijun, et al. Sphalerites Rb-Sr dating and geological significance of the Shuitoushan Pb-Zn deposit in Yunnan Province, SW China [J]. Sedimentary Geology and Tethyan Geology, 2022, 42(1): 122-132. doi: 10.19826/j.cnki.1009-3850.2022.01006 |
张国伟, 郭安林, 董云鹏, 等. 关于秦岭造山带[J]. 地质力学学报, 2019, 25(5): 746-768 doi: 10.12090/j.issn.1006-6616.2019.25.05.064 ZHANG Guowei, GUO Anlin, DONG Yunpeng, et al. Rethinking of the Qinling Orogen[J]. Journal of Geomechanics, 2019, 25(5): 746-768. doi: 10.12090/j.issn.1006-6616.2019.25.05.064 |
张健, 李怀坤, 田辉. 华北克拉通南缘官道口群龙家园组凝灰岩SHRIMP锆石U-Pb年代学研究[J]. 华北地质, 2021, 44(04): 1-4 ZHANG Jian, LI Huaikun, TIAN Hui. SHRIMP Zircon U-Pb dating of tuff from the Longjiayuan Formation of the Guandaokou Group, southern margin of North China Craton [J]. North China Geology, 2021, 44(04): 1-4. |
张元厚, 张世红, 韩以贵, 等. 华熊地块马超营断裂走滑特征及演化[J]. 吉林大学学报(地球科学版), 2006, 36(2): 169-176, 193. ZHANG Yuanhong, ZHANG Shihong, HAN Yigui, et al. Strik-Slip Features of the Machaoying Fault Zone and Its Evolution in the Huaxiong Terrane, Southern North China Craton[J]. Journal of Jilin Unviersity: Earth Science Edition, 2006, 36(2): 169-176+193. |
赵太平, 徐勇航, 翟明国. 华北陆块南部元古宙熊耳群火山岩的成因与构造环境: 事实与争议[J]. 高校地质学报, 2007, 2: 191-206 doi: 10.3969/j.issn.1006-7493.2007.02.005 ZHAO Taiping, XU Yonghang, ZHAI Mingguo. Petrogenesis and Tectonic Setting of the Paleoproterozoic Xiong’er Group in the Southern Part of the North China Craton: a Review[J]. Geological Journal of China Universities, 2007, 2: 191-206. doi: 10.3969/j.issn.1006-7493.2007.02.005 |
Ames L, Tilton G R, Zhou G. Timing of collision of the Sino-Korean and Yangtse cratons: uranium-lead zircon dating of coesite-bearing eclogites. [J]. Geology, 1993, 21(4): 339-342. doi: 10.1130/0091-7613(1993)021<0339:TOCOTS>2.3.CO;2 |
Brooker R A, Kjarsgaard B A. Silicate–Carbonate Liquid Immiscibility and Phase Relations in the System SiO2–Na2O–Al2O3–CaO–CO2 at 0·1–2·5 GPa with Applications to Carbonatite Genesis [J]. Journal of Petrology, 2011, 52(7/8): 1281-1305. |
Chaussidon M and Lorand J P. Sulphur isotope composition of orogenic spinel lherzolite massifs from Ariege (North-Eastern Pyrenees, France): an ion microprobe study[J]. Geochimica et Cosmochimica Acta, 1990, 54(10): 2835-2846. doi: 10.1016/0016-7037(90)90018-G |
Chavagnac V, Jahn B M. Coesite-bearing eclogites from the Bixiling Complex, Dabie Mountains, China: Sm-Nd ages, geochemical characteristics and tectonic implications[J]. Chemical Geology, 1996, 133(1): 29-51. |
Chen Y J, Santosh M. Triassic tectonics and mineral systems in the Qinling Orogen, central China[J]. Geological Journal, 2014, 49: 338-358. |
Dong Y P, Yang Z, Liu X M, et al. Mesozoic intracontinental orogeny in the Qinling Mountains, central China[J]. Gondwana Research, 2016, 30: 144-158. |
Feng Jiaying, Tang Li, Yang Bochang, et al. Bastnäsite U-Th-Pb age, sulfur isotope and trace elements of the Huangshui’an deposit: Implications for carbonatite-hosted Mo-Pb-REE mineralization in the Qinling Orogenic Belt, China[J]. Ore Geology Reviews, 2022, 143: 104790. doi: 10.1016/j.oregeorev.2022.104790 |
Gao Shan, Luo Tingchuan, Zhang Benren, et al. Chemical composition of the continental crust as revealed by studies in East China[J]. Geochimica et Cosmochimica Acta, 1998, 62(11): 1959–1975. doi: 10.1016/S0016-7037(98)00121-5 |
Gittins J, Jago B C. Differentiation of natrocarbonatite magma at Oldoinyo Lengai volcano, Tanzania[J]. Mineralogical Magazine, 1998, 62(6): 759-768. doi: 10.1180/002646198548142 |
Hacker B R, Ratschbacher L, Webb L, et al. U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling-Dabie Orogen, China[J]. Earth and Planetary Science Letters, 1998, 161(1): 215-230. |
Harlov D E, Wirth R, Hetherington C J. Fluid-mediated partial alteration in monazite: the role of coupled dissolution–reprecipitation in element redistribution and mass transfer[J]. Contributions to Mineralogy and Petrology, 2011, 162(2): 329-348. doi: 10.1007/s00410-010-0599-7 |
Hou Zengqian, Liu Yan, Tian Shihong, et al. Formation of carbonatite-related giant rare-earth-element deposits by the recycling of marine sediments[J]. Scientific reports, 2015, 5: 2045-2322. |
Hou Zengqian, Tian Shihong, Yuan Zhongxin, et al. The Himalayan collision zone carbonatites in western Sichuan, SW China: Petrogenesis, mantle source and tectonic implication[J]. Earth and Planetary Science Letters, 2006, 244(1-2): 234-250. doi: 10.1016/j.jpgl.2006.01.052 |
Huang Dianhao, Wu Chengyu, Du Andao, et al. Re-Os Isotope Ages of Molybdenum Deposits in East Qinling and Their Significance[J]. Chinese Journal of Geochemistry, 1995, 4: 313-322. |
Kathryn M. Goodenough, Eimear A. Deady, Charles D. Beard, et al. Carbonatites and Alkaline Igneous Rocks in Post-Collisional Settings: Storehouses of Rare Earth Elements[J]. Journal of Earth Science, 2021, 32(6): 1332-1358. doi: 10.1007/s12583-021-1500-5 |
Keller J, Hoefs J. Stable isotope characteristics of recent natrocarbonatites from Oldoinyo Lengai [J]. Carbonatites Volcanism, 1995, 4: 113—123. |
Kynicky J, Smith M P, Xu Cheng. Diversity of Rare Earth Deposits: The Key Example of China[J]. Elements, 2012, 8(5): 361-367. doi: 10.2113/gselements.8.5.361 |
Le Maitre R W. Igneous rocks: a classification and glossary of terms[M]. Cambridge: Cambridge University Press, 2002. |
Ling X X, Li Q L, Liu Y, et al. In situ SIMS Th-Pb dating of bastnaesite: constraint on the mineralization time of the Himalayan Mianning-Dechang rare earth element deposits[J]. Journal of Analytical Atomic Spectrometry, 2016, 31(8): 1680-1687. doi: 10.1039/C6JA00093B |
Mao Jingwen, Zhang Zhaochong, Zhang Zuoheng, et al. Re-Os isotopic dating of molybdenites in the Xiaoliugou W (Mo) deposit in the northern Qilian mountains and its geological significance[J]. Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society, 1999, 63(11/12): 1815-1818. |
Poitrasson F, Shepherd TJ, Chenery S. Electron microprobe and LA-ICP-MS study of monazite hydrothermal alteration: Implications for U-Th-Pb geochronology and nuclear ceramics [Review][J]. Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society, 2000, 64(19): 3283-3297. doi: 10.1016/S0016-7037(00)00433-6 |
Rasmussen B, Muhling J R. Monazite begets monazite: evidence for dissolution of detrital monazite and reprecipitation of syntectonic monazite during low-grade regional metamorphism[J]. Contributions to Mineralogy and Petrology, 2007, 154(6): 675-689. doi: 10.1007/s00410-007-0216-6 |
Sal’nikova E B, Yakovleva S Z, Nikiforov A V, et al. Bastnaesite: A Promising U-Pb Geochronological Tool[J]. Doklady earth sciences, 2010, 430(1): 134-136. doi: 10.1134/S1028334X10010290 |
Song Wenlei, Xu Cheng, Smith M P, et al. Origin of unusual HREE-Mo-rich carbonatites in the Qinling orogen, China[J]. Scientific reports, 2016, 6(1): 37377. doi: 10.1038/srep37377 |
Song Wenlei, Xu Cheng, Qi Liang, et al. Genesis of Si-rich carbonatites in Huanglongpu Mo deposit, Lesser Qinling orogen, China and significance for Mo mineralization[J]. Ore Geology Reviews, 2015, 64: 756-765. doi: 10.1016/j.oregeorev.2014.04.003 |
Stein H J, Markey R J, Morgan J W, et al. Highly precise and accurate Re-Os ages for molybdenite from the East Qinling molybdenum belt, Shaanxi Province, China[J]. Economic Geology, 1997, 92(7-8): 827-835. doi: 10.2113/gsecongeo.92.7-8.827 |
Tang Li, Wagner T, Fusswinke T, et al. Magmatic-hydrothermal evolution of an unusual Mo-rich carbonatite: a case study using LA-ICP-MS fluid inclusion microanalysis and He–Ar isotopes from the Huangshui’an deposit, Qinling, China[J]. Mineralium Deposita, 2021, 56(6) : 1-18. |
Tang Li, Zhang Shouting, Yang Fan, et al. Triassic alkaline magmatism and mineralization in the Xiong'ershan area, East Qinling, China[J]. Geological Journal, 2019, 54(1): 143-156. doi: 10.1002/gj.3166 |
Taylor H P, Frechen J, Degens, E T. Oxygen and carbon isotope studies of carbonatites from the Laacher See District, West Germany and the Alnö District, Sweden[J]. Geochimica et Cosmochimica Acta, 1967, 31(3): 407-430. doi: 10.1016/0016-7037(67)90051-8 |
Wallace M E, Green D H. An experimental determination of primary carbonatite magma composition[J]. Nature, 1988, 335: 343. doi: 10.1038/335343a0 |
Wang, Zaicong, Becker H. Molybdenum partitioning behavior and content in the depleted mantle: Insights from Balmuccia and Baldissero mantle tectonites (Ivrea Zone, Italian Alps) [J]. Chemical Geology, 2018, 499: 138-150. doi: 10.1016/j.chemgeo.2018.09.023 |
Wedepohl K H. The composition of the continental crust[J]. The Geochimica et Cosmochimica Acta, 1995, 59, 1217-1232. doi: 10.1016/0016-7037(95)00038-2 |
Xu Cheng, Chakhmouradian A R, Taylor R N, et al. Origin of carbonatites in the South Qinling orogen: Implications for crustal recycling and timing of collision between the South and North China Blocks[J]. Geochimica et Cosmochimica Acta, 2014, 143: 189-206. doi: 10.1016/j.gca.2014.03.041 |
Xu Cheng, Wang Linjun, Song Wenlei, et al. Carbonatites in China: A review for genesis and mineralization[J]. Geoscience Frontiers, 2010, 1(1): 105-114. doi: 10.1016/j.gsf.2010.09.001 |
Yang Yueheng, Wu Fuyuan, Li Yang. In situ U-Pb dating of bastnaesite by LA-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(6): 1017-1023. doi: 10.1039/C4JA00001C |
Ying Yuancan, Chen Wei, Lu Jue, et al. In situ U-Th-Pb ages of the Miaoya carbonatite complex in the South Qinling orogenic belt, central China[J]. Lithos, 2017, 290: 159-171 |
Zhang Wei, Chen Wei Terry, Gao Jianfeng, et al. Two episodes of REE mineralization in the Qinling Orogenic Belt, Central China: in-situ U-Th-Pb dating of bastnäsite and monazite[J]. Mineralium Deposita, 2019, 54(8): 1265-1280. doi: 10.1007/s00126-019-00875-7 |
Zheng Hui, Chen Huayong, Li Dengfeng, et al. 2020. Timing of carbonatite-hosted U-polymetallic mineralization in the supergiant Huayangchuan deposit, Qinling Orogen: constraints from titanite U–Pb and molybdenite Re–Os dating[J]. Geoscience Frontiers, 2020, 11: 1581-1592. doi: 10.1016/j.gsf.2020.03.001 |
Zheng Y F, Gao T S, Wu Y B, et al. Fluid flow during exhumation of deeply subducted continental crust: zircon U-Pb age and O-isotope studies of a quartz vein within ultrahigh-pressure eclogite[J]. Journal of Metamorphic Geology, 2007, 25(2): 267-283. doi: 10.1111/j.1525-1314.2007.00696.x |
(A) Tectonic framework of the Qinling Orogen and (B) geological map of the Xiong’ershan area showing important ore deposits
(A) Geological map of the Huangshui’an Mo deposit and (B) the geological profile of exploration line a–b in this deposit
(A~C) Phorographs of carbonatite and (D~F) Photomicrographs of mineral composition in the Huangshui’an Mo–REE deposit
(A) Normalized REE and (B) trace element patterns of calcites from the Huangshui’an Mo–REE deposit
C–O isotopic diagram of carbonatites from the Huangshui’an carbonatite
Backscattered-electron (BSE) images of bastnäsite that show location of analyzed spots and corresponding 208Pb/232Th ages in the Huangshui’an Mo–REE deposit
LA–ICP–MS U–Th–Pb ages of the bastnäsite from the Huangshui’an Mo–REE deposit