2023 Vol. 56, No. 1
Article Contents

GAO Yongwei, HONG Jun, LÜ Pengrui, CAO Kai, ZHANG Yuxuan, LI Xutuo, LIU Mingyi, ZHANG Dandan, MA Zhongping. 2023. Geological Background, Metallogenic Characteristics and Ore Genesis of the KempirsayChromite Resource Base in the Ural, Kazakhstan. Northwestern Geology, 56(1): 142-155. doi: 10.12401/j.nwg.2022006
Citation: GAO Yongwei, HONG Jun, LÜ Pengrui, CAO Kai, ZHANG Yuxuan, LI Xutuo, LIU Mingyi, ZHANG Dandan, MA Zhongping. 2023. Geological Background, Metallogenic Characteristics and Ore Genesis of the KempirsayChromite Resource Base in the Ural, Kazakhstan. Northwestern Geology, 56(1): 142-155. doi: 10.12401/j.nwg.2022006

Geological Background, Metallogenic Characteristics and Ore Genesis of the KempirsayChromite Resource Base in the Ural, Kazakhstan

More Information
  • China ranks at the top in chromium consumption and stainless steel production, yet due to the limited domestic reserve and mine production of chromite ore, the current supply of chromium relies on the main imports from South Africa. Meanwhile, Kazakhstan has a leading position in chromite reserves and mining, mainly from the Kempirsay chromite resource base. On account of the above, this contribution provides an exhaustive summary of the geological background, ophiolites, metallogenic characteristics, the deposit’s genetic types, and the development status of the resource base. The Kempirsay chromite resource base is tectonically located in the Kempirsay massif of southern Urals. Many ophiolites were produced and preserved in the Ural orogenic belt during the opening and closure of the Ural paleo–ocean in the Cambrian to Triassic and host a series of podiform chromite deposits. The Harzburgites and dunites dominate the mantle peridotites, which are outcropped in a complete ophiolite sequence of the Kempirsay massif. Two kinds of chromitite have been found: the high–Al type in the Early Devonian (or earlier) MOR setting and the high–Cr type in the Late Devonian Supra–subduction zone(SSZ). The latter chromitite was formed in the reaction between the melt derived from residual mantle peridotites metasomatized by subduction fluids with depleted mantle during the intra–ocean subduction process. The estimated chromite reserve of the Kempirsay resource base is approximately 300 million tons, forming an annual chromite ore production of 7 million tons. Over half of the 1.69 million tons of ferrochrome production is exported to China. In summary, the Kempirsay chromite resource base in the Ural of Kazakhstan has favorable metallogenetic conditions and progressive mining activities. Thus, China should endeavor to strengthen cooperation with Kazakhstan in the potential resource investigation, exploration, mining of chromite resources, and related industry capacity.

  • 加载中
  • 鲍佩声. 再论蛇绿岩中豆荚状铬铁矿的成因—质疑岩石/熔体反应成矿说[J]. 地质通报, 2009, 28(12): 1741-1761 doi: 10.3969/j.issn.1671-2552.2009.12.008

    CrossRef Google Scholar

    BAO Peisheng. Further discussion on the genesis of the podiform chromite deposits in the ophiolites—questioning about the rock/ melt interaction metallogeny[J]. Geological Bulletin of China, 2009, 28(12): 1741-1761. doi: 10.3969/j.issn.1671-2552.2009.12.008

    CrossRef Google Scholar

    鲍佩声. 元古代蛇绿岩及铬铁矿[J]. 岩石学报, 2019, 35(10): 2971-2988 doi: 10.18654/1000-0569/2019.10.03

    CrossRef Google Scholar

    BAO Peisheng. Proterozoic ophiolite and chromite[J]. Acta Petrologica Sinica, 2019, 35(10): 2971-2988. doi: 10.18654/1000-0569/2019.10.03

    CrossRef Google Scholar

    陈其慎, 张艳飞, 邢佳韵, 等. 国内外战略性矿产厘定理论与方法[J]. 地球学报, 2021, 42(2): 137-144 doi: 10.3975/cagsb.2020.102604

    CrossRef Google Scholar

    CHEN Qishen, ZHANG Yanfei, XING Jiayun, et al. Methods of strategic mineral resources determination in China and abroad[J]. Acta Geoscientica Sinica, 2021, 42(2): 137-144. doi: 10.3975/cagsb.2020.102604

    CrossRef Google Scholar

    陈艳虹, 杨经绥. 豆荚状铬铁矿床研究回顾与展望[J]. 地球科学, 2018, 43(4): 991-1010

    Google Scholar

    CHEN Yanhong, YANG Jingsui. Formation of podiform chromitite deposits: review and prospects[J]. Earth Science, 2018, 43(4): 991-1010.

    Google Scholar

    成金华, 刘凯雷, 徐德义, 等. 战略性关键矿产资源可供性研究现状与展望[J]. 河北地质大学学报, 2021, 44(1): 95-103

    Google Scholar

    CHENG Jinhua, LIU Kailei, XU Deyi, et al. Review of the research on strategic and critical mineral resources availability[J]. Journal of Hebei Geo University, 2021, 44(1): 95-103.

    Google Scholar

    高永伟, 刘明义, 张丹丹, 等. 哈萨克斯坦主要矿产资源特征及矿业投资环境[J]. 地质与勘探, 2022, 58(2): 454-464

    Google Scholar

    GAO Yongwei, LIU Mingyi, ZHANG Dandan, et al. Characteristics of main mineral resources and mining investment environment in Kazakhstan[J]. Geology and Exploration, 2022, 58(3): 454-464.

    Google Scholar

    计文化, 张海迪, 杨博, 等. 中亚重要成矿带成矿规律与优势矿产资源潜力评价综合研究报告[R]. 中国地质调查局西安地质调查中心, 2013.

    Google Scholar

    李江海, 牛向龙, 黄雄南, 等. 豆荚状铬铁矿: 古大洋岩石圈残片的重要证据[J]. 地学前缘, 2002, 9(4): 235-246 doi: 10.3321/j.issn:1005-2321.2002.04.003

    CrossRef Google Scholar

    LI Jianghai, NIU Xianglong, HUANG Xiongnan, et al. Podiform chromitites: a key to identify the ancient oceanic lithospheric relicts[J]. Earth Science Frontiers, 2002(4): 235-246. doi: 10.3321/j.issn:1005-2321.2002.04.003

    CrossRef Google Scholar

    李三忠, 杨朝, 赵淑娟, 等. 全球早古生代造山带(Ⅱ): 俯冲-增生型造山[J]. 吉林大学学报(地球科版), 2016, 46(4): 968-1004

    Google Scholar

    LI Sanzhong, YANG Zhao, ZHAO Shujuan, et al. Global early Paleozoic Orogens(Ⅱ): subduction-accretionary-type Orogeny[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(04): 968-1004.

    Google Scholar

    李文渊. 块状硫化物矿床的类型、分布和形成环境[J]. 地球科学与环境学报, 2007, 29(4): 331-344 doi: 10.3969/j.issn.1672-6561.2007.04.001

    CrossRef Google Scholar

    LI Wenyuan. Classification, distribution and forming setting of massive sulfide deposits[J]. Journal of Earth Sciences and Environment, 2007, 29(4): 331-344. doi: 10.3969/j.issn.1672-6561.2007.04.001

    CrossRef Google Scholar

    刘全文, 沙景华, 闫晶晶, 等. 中国铬资源供应风险评价与对策研究[J]. 资源科学, 2018, 40(3): 516-525

    Google Scholar

    LIU Quanwen, SHA Jinghua, YAN Jingjing, et al. Risk assessment and countermeasures of chromium resource supply in China[J]. Resources Science, 2018, 40(3): 516-525.

    Google Scholar

    刘婷, 郑有业, 郭统军. 大中型豆荚状铬铁矿床地球化学特征研究[J]. 地质科技情报, 2019, 38(2): 217-225

    Google Scholar

    LIU Ting, ZHENG Youye, GUO Tongjun. Optimal geochemical features of medium and large-sized podiform chromite ores[J]. Geological Science and Technology Information, 2019, 38(2): 217-225.

    Google Scholar

    吕鹏瑞, 高永伟, 张宇轩, 等. 哈萨克斯坦铬铁矿资源禀赋、供应格局与中哈产能合作建议[J]. 西北地质, 2022, 55(3): 297-305

    Google Scholar

    LÜ Pengrui, GAO Yongwei, ZHANG Yuxuan, et al. Kazakhstan's Chromite Resource Endowment, Development, Import and its Suggestions for Production Capacity Cooperation between China and Kazakhstan[J]. Northwestern Geology, 2022, 55(3): 297-305.

    Google Scholar

    苏本勋, 白洋, 陈晨, 等. 铬铁矿床母岩浆含水性的岩石矿物学探讨[J]. 矿物岩石地球化学通报, 2018, 37(6): 1035-1046

    Google Scholar

    SU Benxun, BAI Yang, CHEN Chen, et al. Petrological and mineralogical investigations on hydrous properties of parental magmas of chromite deposits[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2018, 37(06): 1035-1046.

    Google Scholar

    王登红. 关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向[J]. 地质学报, 2019, 93(6): 1189-1209 doi: 10.3969/j.issn.0001-5717.2019.06.003

    CrossRef Google Scholar

    WANG Denghong. Study on critical mineral resources: significance of research, determination of types, attributes of resources, progress of prospecting, problems of utilization, and direction of exploitation[J]. Acta Geologica Sinica, 2019, 93(6): 1189-1209. doi: 10.3969/j.issn.0001-5717.2019.06.003

    CrossRef Google Scholar

    王九一. 全球高纯石英原料矿的资源分布与开发现状[J]. 岩石矿物学杂志, 2021, 40(1): 131-141 doi: 10.3969/j.issn.1000-6524.2021.01.012

    CrossRef Google Scholar

    WANG Jiuyi. Global high purity quartz deposits: resources distribution and exploitation status[J]. Acta Petrologica et Mineralogica, 2021, 40(1): 131-141. doi: 10.3969/j.issn.1000-6524.2021.01.012

    CrossRef Google Scholar

    王玉往, 王京彬, 王莉娟, 等. 新疆北部镁铁-超镁铁质岩的PGE成矿问题[J]. 地学前缘, 2010, 17(1): 137-152

    Google Scholar

    WANG Yuwang, WANG Jingbin, WANG Lijuan, et al. PGE metallogenesis related to mafic-ultramafic complex in North Xinjiang[J]. Earth Science Frontiers, 2010, 17(1): 137-152.

    Google Scholar

    熊发挥, 杨经绥, 巴登珠, 等. 西藏罗布莎不同类型铬铁矿的特征及成因模式讨论[J]. 岩石学报, 2014, 30(8): 2137-2163

    Google Scholar

    XIONG Fahui, YANG Jingsui, BA Dengzhu, et al. Different type of chromitite and genetic model from Luobusa ophiolite, Tibet[J]. Acta Petrologica Sinica, 2014, 30(8): 2137-2163.

    Google Scholar

    杨经绥, 张仲明, 李天福, 等. 西藏罗布莎铬铁矿体围岩方辉橄榄岩中的异常矿物[J]. 岩石学报, 2008, 24(7): 1445-1452

    Google Scholar

    YANG Jingsui, ZHANG Zhongming, LI Tianfu, et al. Unusual minerals from harzburgite, the host rock of the Luobusa chromite deposit, Tibet[J]. Acta petrologica Sinica, 2008, 24(7): 1445-1452

    Google Scholar

    翟明国, 胡波. 矿产资源国家安全、国际争夺与国家战略之思考[J]. 地球科学与环境学报, 2021, 43(1): 1-11 doi: 10.19814/j.jese.2020.10018

    CrossRef Google Scholar

    ZHAI Mingguo, HU Bo. Thinking to state security, international competition and national strategy of mineral resources[J]. Journal of Earth Sciences and Environment, 2021, 43(1): 1-11. doi: 10.19814/j.jese.2020.10018

    CrossRef Google Scholar

    张炜. 世界铬矿资源需求分析及预测[J]. 资源与产业, 2016, 18(4): 87-91 doi: 10.13776/j.cnki.resourcesindustries.2016.04.012

    CrossRef Google Scholar

    ZHANG Wei. Demand analysis and prediction of world chrome resource[J]. Resources and Industries, 2016, 18(4): 87-91. doi: 10.13776/j.cnki.resourcesindustries.2016.04.012

    CrossRef Google Scholar

    张伟波, 刘翼飞, 何学洲. 非洲铬铁矿资源分布与找矿潜力[J]. 中国矿业, 2019, 28(4): 79-83

    Google Scholar

    ZHANG Weibo, LIU Yifei, HE Xuezhou. Distribution and prospecting potential of chromite resource in Africa[J]. China Mining Magazine, 2019, 28(4): 79-83.

    Google Scholar

    赵宏军, 陈玉明, 陈秀法, 等. 全球铬铁矿床成因类型、地质特征及时空分布规律初探[J]. 矿床地质, 2021, 40(6): 1312-1326 doi: 10.16111/j.0258-7106.2021.06.012

    CrossRef Google Scholar

    ZHAO Hongjun, CHEN Yuming, CHEN Xiufa, et al. A review on genetic types, geological characteristics and temporal and spatial distribution of chromite deposits in world[J]. Mineral Deposits, 2021, 40(6): 1312-1326. doi: 10.16111/j.0258-7106.2021.06.012

    CrossRef Google Scholar

    中华人民共和国自然资源部. 中国矿产资源报告2021[M]. 北京: 地质出版社, 2021: 4-12

    Google Scholar

    Ministry of Natural Resources, PRC. 2021 China Mineral Resources[M]. Beijing: Geological Publishing House, 2021: 4-12

    Google Scholar

    Arai S, Miura M. Podiform chromitites do form beneath mid-ocean ridges[J]. Lithos, 2015, 232: 143-149. doi: 10.1016/j.lithos.2015.06.015

    CrossRef Google Scholar

    Arai S, Yurimoto H. Podiform chromitites of the Tari-Misaka ultramafic complex, southwestern Japan, as mantle-melt interaction products[J]. Economic Geology, 1994, 89(6): 1279-1288. doi: 10.2113/gsecongeo.89.6.1279

    CrossRef Google Scholar

    Arai S. Origin of podiform chromitites[J]. Journal of Asian Earth Sciences, 1997, 15(2-3): 303-310. doi: 10.1016/S0743-9547(97)00015-9

    CrossRef Google Scholar

    Batanova V G, Belousov I A, Savelieva G N, et al. Consequences of Channelized and Diffuse Melt Transport in Supra-subduction Zone Mantle: Evidence from the Voykar Ophiolite (Polar Urals)[J]. Journal of Petrology, 2011, 52(12): 2483-2521. doi: 10.1093/petrology/egr053

    CrossRef Google Scholar

    Belova A A, Ryazantsev A V, Razumovsky A A, et al. Early Devonian suprasubduction ophiolites of the southern Urals[J]. Geotectonics, 2010, 44(4): 321-343. doi: 10.1134/S0016852110040035

    CrossRef Google Scholar

    Dick H J B, Bullen T. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas[J]. Contributions to Mineralogy and Petrology, 1984, 86(1): 54-76 doi: 10.1007/BF00373711

    CrossRef Google Scholar

    Distler V V, Kryachko V V, Yudovskaya M A. Formation conditions of platinum-group metals in chromite ores of the Kempirsai ore field[J]. Geology of Ore Deposits, 2003, 45(1): 37-65.

    Google Scholar

    Furnes H, Wit M D, Dilek Y. Four billion years of ophiolites reveal secular trends in oceanic crust formation[J]. Geoscience Frontiers, 2014, 5(4): 571-603. doi: 10.1016/j.gsf.2014.02.002

    CrossRef Google Scholar

    Garuti G, Pushkarev E V, Thalhammer O A R, et al. Chromitites of the urals (part 1): overview of chromite mineral chemistry and geo-tectonic setting[J]. Ofioliti, 2012, 37(1) : 27-53.

    Google Scholar

    González-Jiménez J M, Proenza J A, Gervilla F, et al. High-Cr and high-Al chromitites from the Sagua de Tánamo district, Mayarí-Cristal ophiolitic massif (eastern Cuba): Constraints on their origin from mineralogy and geochemistry of chromian spinel and platinum-group elements[J]. Lithos, 2011, 125(1-2): 101-121. doi: 10.1016/j.lithos.2011.01.016

    CrossRef Google Scholar

    Graham I T, Franklin B J, Marshall B. Chemistry and mineralogy of podiform chromititee deposits, southern NSW, Australia: a guide to their origin and evolution[J]. Mineralogy and Petrology, 1996, 37: 129-150.

    Google Scholar

    Haldar S K. Platinum-Nickel-Chromium Deposits: Geology, Exploration, and Reserve Base[M]. Elsevier, 2017: 179-181.

    Google Scholar

    Ivanov K S, Puchkov V N, Fyodorov Y N, et al. Tectonics of the Urals and adjacent part of the West-Siberian platform basement: Main features of geology and development[J]. Journal of Asian Earth Sciences, 2013, 72: 12-24. doi: 10.1016/j.jseaes.2013.02.029

    CrossRef Google Scholar

    Kamenetsky V S, Crawford A J, Meffre S. Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks[J]. Journal of Petrology, 2001, 42(4): 655-671. doi: 10.1093/petrology/42.4.655

    CrossRef Google Scholar

    Melcher F, Grum W, Simon G, et al. Petrogenesis of the Ophiolitic Giant Chromite Deposits of Kempirsai, Kazakhstan: a Study of Solid and Fluid Inclusions in Chromite[J]. Journal of Petrology, 1997, 38(10): 1419-1458. doi: 10.1093/petroj/38.10.1419

    CrossRef Google Scholar

    Melcher F, Grum W, Thalhammer T V, et al. The giant chromite deposits at Kempirsai, Urals: constraints from trace element (PGE, REE) and isotope data[J]. Mineralium Deposita, 1999, 34: 250-272. doi: 10.1007/s001260050202

    CrossRef Google Scholar

    Mondal S K, Khatun S, Prichard H M, et al. Platinum-group element geochemistry of boninite-derived Mesoarchean chromitites and ultramafic-mafic cumulate rocks from the Sukinda Massif (Orissa, India)[J]. Ore Geology Reviews, 2019, 104: 722-744. doi: 10.1016/j.oregeorev.2018.11.027

    CrossRef Google Scholar

    Pirajno F, Uysal I, Naumov E A. Oceanic lithosphere and ophiolites: Birth, life and final resting place of related ore deposits[J]. Gondwana Research, 2020, 88(5): 333-352.

    Google Scholar

    Prochaska W, Krupenin M. Formation of magnesite and siderite deposits in the Southern Urals-evidence of inclusion fluid chemistry[J]. Mineralogy and Petrology, 2013, 107(1): 53-65. doi: 10.1007/s00710-012-0251-5

    CrossRef Google Scholar

    Puchkov V N. General features relating to the occurrence of mineral deposits in the Urals: What, where, when and why[J]. Ore Geology Reviews, 2017, 85: 4-29. doi: 10.1016/j.oregeorev.2016.01.005

    CrossRef Google Scholar

    Puchkov V N. Structural stages and evolution of the Urals[J]. Mineralogy and Petrology, 2013, 107(1): 3-37. doi: 10.1007/s00710-012-0263-1

    CrossRef Google Scholar

    Puchkov V N. The diachronous (step-wise) arc-continent collision in the Urals[J]. Tectonophysics, 2009, 479(1-2): 175-184. doi: 10.1016/j.tecto.2009.01.014

    CrossRef Google Scholar

    Rizeli M E, Beyarslan M, Wang K L, et al. Mineral chemistry and petrology of mantle peridotites from the Guleman ophiolite (SE Anatolia, Turkey): evidence of a forearc setting[J]. Journal of African Earth Sciences, 2016, 123: 392-402. doi: 10.1016/j.jafrearsci.2016.08.013

    CrossRef Google Scholar

    Rollinson H, Mameri L, Barry T. Polymineralic inclusions in mantle chromitites from the Oman ophiolite indicate a highly magnesian parental melt[J]. Lithos, 2018, 310-311: 381-391. doi: 10.1016/j.lithos.2018.04.024

    CrossRef Google Scholar

    Saveliev D E. Chromitites of the Kraka ophiolite (South Urals, Russia): geological, mineralogical and structural features[J]. Mineralium Deposita, 2021, 56(6): 1111-1132. doi: 10.1007/s00126-021-01044-5

    CrossRef Google Scholar

    Savelieva G N, Sharaskin A Y, Saveliev A A, et al. Ophiolites and zoned mafic-ultramafic massifs of the Urals: a comparative analysis and some tectonic implications[A]. In: Brawn D, Juhlin C, Puchkov V (eds) Mountain Building in the Uralides: Pangea to Present[C]. Geophysical Monographs, American Geophysical Union, 2002, 132: 111-137.

    Google Scholar

    Savelieva G N. Ophiolites in European Variscides and Uralides: Geodynamic settings and metamorphism[J]. Geotectonics, 2011, 45(6): 439-452. doi: 10.1134/S0016852111060070

    CrossRef Google Scholar

    Shemelev V R. Mantle Ultrabasites of Ophiolite Complexes in the Polar Urals: Petrogenesis and Geodynamic Environments[J]. Petrology, 2011, 19(6): 618-640. doi: 10.1134/S0869591111060038

    CrossRef Google Scholar

    Thayer P T. Principal features and origin of podiform chromite deposits, and some observations on the Guelman-Soridag District, Turkey[J]. Economic Geology, 1964, 59(8): 1497-1524. doi: 10.2113/gsecongeo.59.8.1497

    CrossRef Google Scholar

    USGS. Mineral commodity summaries 2022[R]. 2022.

    Google Scholar

    Uysal İ, Tarkian M, Sadiklar M B, et al. Petrology of Al- and Cr-rich ophiolitic chromitites from the Muğla, SW Turkey: implications from composition of chromite, solid inclusions of platinum-group mineral, silicate, and base-metal mineral, and Os-isotope geochemistry[J]. Contributions to Mineralogy and Petrology, 2009, 158(5): 659-674 doi: 10.1007/s00410-009-0402-9

    CrossRef Google Scholar

    Xiong F H, Zoheir B, Robinson P T, et al. Genesis of the Ray-Iz chromitite, Polar Urals: Inferences to mantle conditions and recycling processes[J]. Lithos, 2020, 374-375: 105699. doi: 10.1016/j.lithos.2020.105699

    CrossRef Google Scholar

    Yang J S, Dobrzhinetskaya L, Bai WJ, et al. Diamond- and coesite-bearing chromitites from the luobusa ophiolite, Tibet[J]. Geology, 2007, 35(10): 875-878. doi: 10.1130/G23766A.1

    CrossRef Google Scholar

    Yang J S, Meng F C, Xu X Z, et al. Diamonds, native elements and metal alloys from chromitites of the Ray-Iz ophiolite of the Polar Urals[J]. Gondwana Research, 2015, 27(2) : 459-485. doi: 10.1016/j.gr.2014.07.004

    CrossRef Google Scholar

    Zaccarini F, Pushkarev E, Garuti G. Platinum-group element mineralogy and geochemistry of chromitite of the Kluchevskoy ophiolite complex, central Urals (Russia)[J]. Ore Geology Reviews, 2008, 33(1): 20-30. doi: 10.1016/j.oregeorev.2006.05.007

    CrossRef Google Scholar

    Zhou M F, Robinson P T, Bai WJ. Formation of podiform chromitites by melt/rock interaction in the upper mantle[J]. mineralium deposita, 1994, 29: 98-101. doi: 10.1007/BF03326400

    CrossRef Google Scholar

    Zhou M F, Robinson P T, Malpas J, et al. Podiform chromitites in the luobusa ophiolite (southerntibet): implications for melt-rock interaction and chromite segregation in the upper mantle[J]. Journal of Petrology, 1996, 37(1): 3-21. doi: 10.1093/petrology/37.1.3

    CrossRef Google Scholar

    Zhou M F, Robinson P T. Origin and tectonic environment of podiform chromite deposits[J]. Economic Geology, 1997, 92(2): 259-262. doi: 10.2113/gsecongeo.92.2.259

    CrossRef Google Scholar

    Zhou M F, Sun M, Keays R R, et al. Controls on platinum-group elemental distributions of podiform chromitites: a case study of high-Cr and high-Al chromitites from Chinese orogenic belts[J]. Geochimica et Cosmochimica Acta, 1998, 62(4): 677-688. doi: 10.1016/S0016-7037(97)00382-7

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(1)

Article Metrics

Article views(2526) PDF downloads(36) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint