Geological Publishing House, Institute of Exploration Technology, Chinese Academy of Geological SciencesHost
2024 Vol. 51, No. 6
Article Contents

QIN Rulei, GAO Jieyun, YU Yanjiang, CHEN Haowen, LI Qiang, HE Guolei, SU Xianghui, XU Benchong. 2024. Study on the design and hydraulic characteristics of the submarine mud lift pump. DRILLING ENGINEERING, 51(6): 77-84. doi: 10.12143/j.ztgc.2024.06.009
Citation: QIN Rulei, GAO Jieyun, YU Yanjiang, CHEN Haowen, LI Qiang, HE Guolei, SU Xianghui, XU Benchong. 2024. Study on the design and hydraulic characteristics of the submarine mud lift pump. DRILLING ENGINEERING, 51(6): 77-84. doi: 10.12143/j.ztgc.2024.06.009

Study on the design and hydraulic characteristics of the submarine mud lift pump

  • As the core functional unit of riserless mud recovery system,the mud lifting centrifugal pump drives the mud stored in the suction module to carry rock cuttings recirculate back to the drilling platform through the return pipeline.Previous designs of the riserless mud recovery system primarily employed disc pumps as the lifting unit,with specific structural design and theoretical analysis conducted around them. However,there has been limited research on multi-stage centrifugal pumps,which offer superior hydraulic performance. In this study,we focus on the theoretical basis and specific parameters of a multi-stage centrifugal pump,and develop a computational model using CFD-DEM coupling calculation to conduct a full-scale flow field simulation.This simulation investigates the impeller design,flow field characteristics,internal particle distribution patterns,and mud rock transport patterns within the pump.The results validate the centrifugal pump’s good particle permeability under design conditions. Furthermore,we conducted hydraulic performance tests on a centrifugal pump prototype using a mud lifting test bench. The test resultsindicate that the pump exhibits satisfactory operational working characteristics and hydraulic performance,meeting the design requirements for application in deep-sea riserless drilling operations.
  • 加载中
  • [1] 陈浩文,于彦江,王艳丽,等.气举技术应用于深海无隔水管泥浆回收钻井工艺可行性分析[J].钻探工程,2022,49(2):9-15.

    Google Scholar

    CHEN Haowen,YU Yanjiang,WANG Yanli,et al. Feasibility analysis of gas lift technology for application in deep-sea riserless mud recovery drilling[J]. Drilling Engineering,2022,49(2):9-15.

    Google Scholar

    [2] 陈浩文,刘晓林,王林清,等.无隔水管泥浆回收钻井技术控制系统功能设计[J].钻探工程,2021,48(S1):375-380.

    Google Scholar

    CHEN Haowen,LIU Xiaolin,WANG Linqing,et al. Functional design of the control system of riserless mud recovery drilling technology[J]. Drilling Engineering,2021,48(S1):375-380.

    Google Scholar

    [3] 高本金,陈国明,殷志明,等.深水无隔水管钻井液回收钻井技术[J].石油钻采工艺,2009,31(2):44-47.

    Google Scholar

    GAO Benjin,CHEN Guoming,YIN Zhiming,et al. Deepwater riserless mud recovery drilling technology[J]. Oil Drilling & Production Technology,2009,31(2):44-47.

    Google Scholar

    [4] Cohen J H,Kleppe J,Grønås T,et al. Gulf of Mexico’s first application of riserless mud recovery for top-hole drilling-A case study[C]//Offshore Technology Conference. Houston,Texas,USA,2010: OTC-20939-MS..

    Google Scholar

    [5] 王偲,谢文卫,张伟,等.RMR 技术在海域天然气水合物钻探中的适应性分析[J].探矿工程(岩土钻掘工程),2020,47(2):17-23.

    Google Scholar

    WANG Cai,XIE Wenwei,ZHANG Wei,et al. Adaptability of RMR for Marine gas hydrate drilling[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling),2020,47(2):17-23.

    Google Scholar

    [6] Aird P. Deepwater well planning and Design-Science Direct[M]//Deepwater Drilling,2019:257-283.

    Google Scholar

    [7] 王江帅,李军,柳贡慧,等.基于井下分离的深水双梯度钻井参数优化[J].石油勘探与开发,2019,46(4):776-781.

    Google Scholar

    WANG Jiangshuai,LI Jun,LIU Gonghui,et al. Parameters optimization in deepwater dual-gradient drilling based on downhole separation[J]. Petroleum Exploration and Development,2019,46(4):776-781.

    Google Scholar

    [8] 于洋,钱则刚,张和平,等.多列往复式压缩机轴系扭振特性研究[J].流体机械,2013,41(7):14-18.

    Google Scholar

    YU Yang,QIAN Zegang,ZHANG Heping,et al. Research on the crankshaft torsional vibration of multi-row reciprocating compressor[J]. Fluid Machinery,2013,41(7):14-18.

    Google Scholar

    [9] 唐斌,刘广彬,许海平,等.大型工艺往复压缩机系统振动分析[J].中国机械工程,2014,25(7):873-877.

    Google Scholar

    TANG Bin,LIU Guangbin,XU Haiping,et al. Vibration analysis of large scale process reciprocating compressor system[J].China Mechanical Engineering,2014,25(7):873-877.

    Google Scholar

    [10] 秦如雷,于彦江,陈浩文,等.无隔水管泥浆循环举升泵选型及性能参数计算方法[J].钻探工程,2021,48(S1):381-385.

    Google Scholar

    QIN Rulei,YU Yanjiang,CHEN Haowen,et al. Selection and calculation of parameters of the mud lifting pump for RMR[J]. Drilling Engineering,2021,48(S1):381-385.

    Google Scholar

    [11] 解永超,陈国明,张叶,等.叶片圆盘泵压力脉动及叶轮径向力特性分析[J].石油机械,2015(10):63-67.

    Google Scholar

    XIE Yongchao,CHEN Guoming,ZHANG Ye,et al. Numerical analysis on pressure fluctuation and radial force of disc pump with straight blade[J]. China Petroleum Machinery,2015(10):63-67.

    Google Scholar

    [12] 陈永超,陈国明,周昌静,等.圆盘泵叶片结构形式对泵外特性影响分析[J].机械设计,2014,31(9):93-96.

    Google Scholar

    CHEN Yongchao,CHEN Guoming,ZHOU Changjing,et al.Analysis on the influence of blade structure on exterior characteristics of disc pump[J]. Journal of Machine Design,2014,31(9):93-96.

    Google Scholar

    [13] 邹伟生,刘瑞仙,刘少军.粗颗粒海底矿石浆体提升电泵研究[J].中国机械工程,2019,30(24):2939-2944.

    Google Scholar

    ZOU Weisheng,LIU Ruixian,LIU Shaojun. Study on lifting motor pumps for coarse particle slurry in sea bed mining[J]. China Mechanical Engineering,2019,30(24):2939-2944.

    Google Scholar

    [14] 邹伟生,卢勇,李哲奂.深海采矿提升泵的数值模拟分析[J].湖南大学学报(自然科学版),2013,40(6):59-63.

    Google Scholar

    ZOU Weisheng,LU Yong,LI Zhehuan. Numerical simulation and analyses of lift pump in deep sea mining[J]. Journal of Hunan University(Natural Sciences),2013,40(6):59-63.

    Google Scholar

    [15] Li X,Zhang J,Tang X,et al. Study on wellbore temperature of riserless mud recovery system by CFD approach and numerical calculation[J]. Petroleum,2020,6(2):163-169.

    Google Scholar

    [16] 黄思,杨富翔,宿向辉.运用CFD-DEM 耦合模拟计算离心泵内非稳态固液两相流动[J]. 科技导报,2014,32(27):28-31.

    Google Scholar

    HUANG Si,YANG Fuxiang,SU Xianghui. Unsteady numerical simulation for solid-liquid two-phase flow in centrifugal pump by CFD-DEM coupling[J]. Science & Technology Review,2014,32(27):28-31.

    Google Scholar

    [17] Zhou M M,Wang S,Kuang S B,et al. CFD-DEM modelling of hydraulic conveying of solid particles in a vertical pipe[J].Powder Technology,2019,354:893-905.

    Google Scholar

    [18] 夏铖,赵睿杰,施卫东,等.基于DEM-CFD 耦合的泵内颗粒流动特性研究[J].工程热物理学报,2021,42(2):357-369.

    Google Scholar

    XIA Cheng,ZHAO Ruijie,SHI Weidong,et al. Numerical investigation of particle induced erosion in a mixed pump by CFD-DEM coupled method[J]. Journal of Engineering Thermophysics,2021,42(2):357-369.

    Google Scholar

    [19] 汪家琼,蒋万明,孔繁余,等.固液两相流离心泵内部流场数值模拟与磨损特性[J].农业机械学报,2013,44(11):53-60.

    Google Scholar

    WANG Jiaqiong,JIANG Wanming,KONG Fanyu,et al. Numerical simulation of solid-liquid two-phase turbulent flow and wear characteristics of centrifugal pump[J]. Transactions of the Chinese Society for Agricultural Machinery,2013,44(11):53-60.

    Google Scholar

    [20] Zhu Z C,Xie P,Ou G F,et al. Design and experimental analyses of small-flow high-head centrifugal-vortex pump for gas-liquid two-phase mixture[J]. Chinese Journal of Chemical Engineering,2008,16(4):528-534.

    Google Scholar

    [21] Ariely S,Khentov A. Erosion corrosion of pump impeller of cyclic cooling water system[J]. Engineering Failure Analysis,2006,13(6):925-932.

    Google Scholar

    [22] Llewellyn R J,Yick S K,Dolman K F. Scouring erosion resistance of metallic materials used in slurry pump service[J].Wear,2004,256(6):592-599.

    Google Scholar

    [23] Morsi S A,Alexander A J. An investigation of particle trajectories in two-phase flow systems[J]. Journal of Fluid Mechanics,1972,55(2):193-208.

    Google Scholar

    [24] 李昳.离心泵内部固液两相流动数值模拟与磨损特性研究[D].杭州:浙江理工大学,2014.LI Die. The research on numerical simulation and abrasion property of solid-liquid two-phase-flow centrifugal pump[D].Hangzhou: Zhejiang Sci-tech University,2014.

    Google Scholar

    [25] Zhang Z,Sun B J,Wang Z Y,et al. Intelligent well killing control method driven by coupling multiphase flow simulation and real-time data[J]. Journal of Petroleum Science and Engineering,2022,213:110337.

    Google Scholar

    [26] Pagalthivarthi K V,Gupta p K,Tyagi V,et al. CFD prediction of erosion wear in centrifugal slurry pumps for dilute slurry flows[J]. The Journal of Computational Multiphase Flows,2011,3(4):225-245.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(66) PDF downloads(2) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint