BAI Haoliang, LIU Baochang, WANG Rusheng, PENG Li and CAI Jixiong, . 2024. Finite element analysis and experimental study of aluminum alloy double-wall drill pipe for polar multi-process drilling. DRILLING ENGINEERING, 51(1): 75-82. doi: 10.12143/j.ztgc.2024.01.010
Citation: |
BAI Haoliang, LIU Baochang, WANG Rusheng, PENG Li and CAI Jixiong, . 2024. Finite element analysis and experimental study of aluminum alloy double-wall drill pipe for polar multi-process drilling. DRILLING ENGINEERING, 51(1): 75-82. doi: 10.12143/j.ztgc.2024.01.010
|
Finite element analysis and experimental study of aluminum alloy double-wall drill pipe for polar multi-process drilling
-
1.College of Construction Engineering, Jilin University, Changchun Jilin 130026, China;2.Key Laboratory of Drilling and Production Technology in Complex Conditions, MNR, Changchun Jilin 130026, China;3.CGE Group Wuxi Drilling Tools Co., Ltd., Wuxi Jiangsu 214100, China
-
Abstract
In order to achieve the scientific research goal of drilling through the ice sheet and directly obtaining subglacial bedrock samples, this paper designs an aluminum alloy double-wall drill pipe for polar drilling, which can meet the drilling requirements of air reverse circulation, hydraulic reverse circulation, and matching with wire-line core drilling in different formations such as overlying snow layer, ice layer, ice-rock interlayer and subglacial bedrock on the polar region. According to the stress of aluminum alloy double-wall drill pipe under the condition of ultimate tensile and ultimate tensile torsion, the finite element analysis of double-wall drill pipe was carried out, and the tensile test and torsion test of the connection specimen between the outer pipe of the double-wall drill pipe and the steel joint were carried out. The finite element analysis results show that the maximum stresses generated in the aluminum alloy double-wall drill pipe under the combination of ultimate tensile and extreme tensile torsion conditions are 183.8MPa and 161.9MPa, respectively, which are less than the yield strength of 489.99MPa of aluminum alloy material. The test results of the specimen strength test of the connection between the outer pipe of the double-wall drill pipe and the steel joint also show that the ultimate bearing tensile force of the tensile specimen during failure is 399.5kN, which is much greater than the tensile force required to lift the 1000m double-wall drill pipe (208.11kN); the limit bearable torque during torsional specimen failure is 8264.7N·m, which is also greater than the maximum torque of the drill pipe in the normal drilling process (1990.56N·m). The above results show that the design scheme of aluminum alloy double-wall drill pipe for polar drilling can meet the requirements of polar drilling.
-
-
References
[1]
|
刘小汉.南极大陆的演化与科学探索[J].人与生物圈,2017(S1):8-11.
Google Scholar
LIU Xiaohan. The evolution and scientific exploration of the Antarctic continent[J]. Man and the Biosphere, 2017(S1):8-11.
Google Scholar
|
[2] |
[2] 雷子炎,葛倩,陈东,等.中全新世以来西南极阿蒙森海沉积物来源和古气候意义[J].地学前缘,2022,29(4):179-190.
Google Scholar
LEI Ziyan, GE Qian, CHEN Dong, et al. Provenance of sediments in the Amundsen Sea, West Antarctic since the mid-Holocene and paleoclimate reconstruction[J]. Earth Science Frontiers,2022,29(4):179-190.
Google Scholar
|
[3] |
[3] Edward G.W. Gasson, Benjamin A. Keisling. The Antarctic ice sheet: A paleoclimate modeling perspective[J]. Oceanography, 2020,33(2):90-100.
Google Scholar
|
[4] |
[4] Palais J. M., Germani M. S., Zielinski G. A.. Inter-hemispheric transport of volcanic ash from a 1259 A.D. volcanic eruption to the Greenland and Antarctic ice sheets[J]. Geophysical Research Letters, 1992,19(8):801-804.
Google Scholar
|
[5] |
[5] Gow Anthony J., Williamson Terrence. Volcanic ash in the Antarctic ice sheet and its possible climatic implications[J]. Earth and Planetary Science Letters, 1971,13(1):210-218.
Google Scholar
|
[6] |
[6] 陈廷愚.南极洲主要矿产资源[J].地球学报(中国地质科学院院报),1996(1):65-77.
Google Scholar
CHEN Tingyu. Main mineral resources of Antarctica[J]. Acta Geoscientia Sinica (Bulletin of the Chinese Academy of Geological Sciences), 1996(1):65-77.
Google Scholar
|
[7] |
[7] 张楠,王亮,Talalay Pavel,等.极地冰钻关键技术研究进展[J].探矿工程(岩土钻掘工程),2020,47(2):1-16.
Google Scholar
ZHANG Nan, WANG Liang, Talalay Pavel, et al. Advances in research on key technology for ice drilling in the polar regions[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2020,47(2):1-16.
Google Scholar
|
[8] |
[8] 李冰,韩丽丽,李亚洲,等.美国极地钻探科学目标分析与钻探技术进展[J].钻探工程,2021,48(9):10-25.
Google Scholar
LI Bing, HAN Lili, LI Yazhou, et al. Science goals analysis and technological progress of U.S. ice drilling[J]. Drilling Engineering, 2021,48(9):10-25.
Google Scholar
|
[9] |
[9] 范晓鹏,张楠,胡正毅,等.中国南极昆仑站深冰芯科学钻探工程进展[J].钻探工程,2021,48(9):1-8.
Google Scholar
FAN Xiaopeng,ZHANG Nan,HU Zhengyi,et al. Progress of the deep ice core scientific drilling project of China at Kunlun Station in Antarctica[J]. Drilling Engineering, 2021,48(9):1-8.
Google Scholar
|
[10] |
[10] 牛金山.浅谈绳索取心钻具结构及优点[J].中国集体经济,2011(28):186-187.
Google Scholar
NIU Jinshan. Introduction to the structure and advantages of rope coring drilling tools[J]. China Collective Economy, 2011(28):186-187.
Google Scholar
|
[11] |
[11] 李鑫淼,李宽,孙建华,等.国内外绳索取心钻具研发应用概况及特深孔钻进问题分析[J].钻探工程,2020,47(4):15-23,39.
Google Scholar
LI Xinmiao, LI Kuan, SUN Jianhua, et al. Development and application of wireline coring tool and diagnosis of ultra-deep hole drilling problems[J]. Drilling Engineering, 2020,47(4):15-23,39.
Google Scholar
|
[12] |
[12] 伍晓龙,冯钰琦,杜垚森,等.气举反循环双壁钻具流场仿真分析[J].钻探工程,2022,49(3):83-91.
Google Scholar
WU Xiaolong, FENG Yuqi, DU Yaosen, et al. Simulation analysis of the flow field of the air lift reverse circulation dual wall drill tool[J]. Drilling Engineering, 2022,49(3):83-91.
Google Scholar
|
[13] |
[13] 赵长亮,王勇军,聂德久,等.雄安新区D19井破碎热储层气举反循环钻进技术[J].钻探工程,2022,49(4):137-143.
Google Scholar
ZHAO Changliang, WANG Yongjun, NIE Dejiu, et al. Gas lift reverse circulation drilling technology for D19 well in broken thermal reservoir in Xiong’an New Area[J]. Drilling Engineering, 2022,49(4):137-143.
Google Scholar
|
[14] |
[14] 董硕,贺文博,曹金娥,等.冰层空气反循环快速钻进方法及冰屑运移研究[J].钻探工程,2021,48(1):49-56.
Google Scholar
DONG Shuo, HE Wenbo, CAO Jine, et al. Study on transportation of ice chips in ice drilling with air reverse circulation[J]. Drilling Engineering, 2021,48(1):49-56.
Google Scholar
|
[15] |
[15] 梁健,刘秀美,王汉宝.地质钻探铝合金钻杆应用浅析[J].勘察科学技术,2010(3):62-64.
Google Scholar
LIANG Jian, LIU Xiumei, WANG Hanbao. Application analysis of aluminum alloy drilling rods in geologic drilling[J]. Site Investigation Science and Technology, 2010(3):62-64.
Google Scholar
|
[16] |
[16] 梁健,张金昌,尹浩,等.钻井利器的故事之“铝合金钻杆”[J].探矿工程(岩土钻掘工程),2018,45(5):1-3.
Google Scholar
LIANG Jian, ZHANG Jinchang, YIN Hao, et al. An efficient drilling tool aluminum alloy drill pipe[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2018,45(5):1-3.
Google Scholar
|
[17] |
[17] 孙澜江,张抒夏,杨睿,等.铝合金钻杆在国内外的研究及现场应用[J].西部探矿工程,2020,32(10):49-52.
Google Scholar
SUN Lanjiang, ZHANG Shuxia, YANG Rui, et al. Research and field application of aluminum alloy drill pipe at home and abroad[J]. West-China Exploration Engineering, 2020,32(10):49-52.
Google Scholar
|
[18] |
[18] 冯春,杨尚谕.铝合金钻杆的特点及发展应用[J].石油管材与仪器,2017(4):1-7.
Google Scholar
FENG Chun, YANG Shangyu. Feature and progress in aluminum alloy drill pipe[J]. Petroleum Tubular Goods & Instruments, 2017(4):1-7.
Google Scholar
|
[19] |
[19] 王小红,郭俊,郭晓华,等.铝合金钻杆材料、特点及其磨损研究进展[J].材料导报,2014,28(1):431-434,437.
Google Scholar
WANG Xiaohong, GUO Jun, GUO Xiaohua, et al. Research progress on the material, characteristics and wear of aluminum alloy drilling rods[J]. Materials Reports, 2014,28(1): 431-434,437.
Google Scholar
|
[20] |
[20] 普·甘朱缅.岩心钻探实用计算[M].北京:地质出版社,1980.R.A.Ganjumjun. Practical Calculations for Core Drilling[M]. Beijing: Geological Publishing House, 1980.
Google Scholar
|
[21] |
[21] 梁健.科学超深井铝合金钻杆优化设计与腐蚀防护工艺[D].北京:中国地质大学(北京),2021.LIANG Jian. Optimum design and corrosion protection of aluminum alloy drill pipe in scientific ultra-deep drilling[D]. Beijing: China University of Geosciences (Beijing), 2021.
Google Scholar
|
-
-
Access History