[1]
|
汪品先.发展深海科技的前景与陷阱[J].科技导报,2021,39(3):71-79.
Google Scholar
WANG Pinxian. Developing deep-sea science and technology: Perspectives and pitfalls[J]. Science &Technology Review, 2021,39(3):71-79.
Google Scholar
|
[2] |
[2] 钟广法,张迪,赵峦啸.大洋钻探天然气水合物储层测井评价研究进展[J].天然气工业,2020,40(8):25-44.
Google Scholar
ZHONG Guangfa, ZHANG Di, ZHAO Luanxiao. Current states of well-logging evaluation of deep-sea gas hydrate-bearing sediments by international scientific ocean drilling (DSDP/ODP/IODP) programs[J]. Natural Gas Industry, 2020,40(8):25-44.
Google Scholar
|
[3] |
[3] 拓守廷,王文涛.国际大洋钻探2050科学框架及其对未来大洋钻探发展的启示[J].地球科学进展,2022,37(10):1049-1053.
Google Scholar
Shouting TUO, WANG Wentao. International scientific ocean drilling 2050 science framework and its implications for future scientific ocean drilling development[J]. Advances in Earth Science, 2022,37(10):1049-1053.
Google Scholar
|
[4] |
[4] 朱芝同,刘晓林,田烈余,等.大洋钻探重入钻孔技术与系统发展应用[J].探矿工程(岩土钻掘工程),2020,47(7):8-15.
Google Scholar
ZHU Zhitong, LIU Xiaolin, TIAN Lieyu, et al. Development and application of the reentry drilling technology and system in ocean drilling[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2020,47(7):8-15.
Google Scholar
|
[5] |
[5] 王诗竣,宋刚,王瑜,等.中国主导的IODP航次取心所遇问题分析及探讨[J].钻探工程,2023,50(1):10-17.
Google Scholar
WANG Shijun, SONG Gang, WANG Yu, et al. Analysis and discussion of the coring problem for China-led IODP voyages[J]. Drilling Engineering, 2023,50(1):10-17.
Google Scholar
|
[6] |
[6] 刘协鲁,陈云龙,阮海龙,等.海底硬岩钻探的现状与前景分析[J].钻探工程,2022,49(1):72-78.
Google Scholar
LIU Xielu, CHEN Yunlong, RUAN Hailong, et al. Status and prospect of subsea hard rock drilling[J]. Drilling Engineering, 2022,49(1):72-78.
Google Scholar
|
[7] |
[7] 陈国明,殷志明,许亮斌,等.深水双梯度钻井技术研究进展[J].石油勘探与开发,2007,(2):246-251.
Google Scholar
CHEN Guoming, YIN Zhiming, XU Liangbin, et al. Review of deepwater dual gradient drilling technology[J]. Petroleum Exploration and Development, 2007,(2):246-251.
Google Scholar
|
[8] |
[8] 殷志明.新型深水双梯度钻井系统原理、方法及应用研究[D].青岛:中国石油大学(华东),2007.YIN Zhiming. New dual-gradient deepwater drilling systems: Principle, method and application[D]. Qingdao: China University of Petroleum (East China), 2007.
Google Scholar
|
[9] |
[9] Smith K L, Gault A D, Witt D E, et al. Subsea mudlift drilling joint industry project: Delivering dual gradient drilling technology to industry[C]//SPE Annual Technical Conference and Exhibition. New Orleans, Louisiana: SPE, 2001:1-13.
Google Scholar
|
[10] |
[10] Schumacher J P, Dowell J D, Ribbeck L R, et al. Subsea mudlift drilling planning and preparation for the first subsea field test of a full-scale dual gradient drilling system at green canyon 136, Gulf of Mexico[C]//SPE Annual Technical Conference and Exhibition. New Orleans, Louisiana: SPE, 2001:1-11.
Google Scholar
|
[11] |
[11] Eggemeyer J C, Akins M E, Brainard R R, et al. Subsea mudlift drilling: Design and implementation of a dual gradient drilling system[C]//SPE Annual Technical Conference and Exhibition. New Orleans, Louisiana: SPE, 2001:1-14.
Google Scholar
|
[12] |
[12] 徐群,陈国明,王国栋,等.无隔水管海洋钻井技术[J].钻采工艺,2011,34(1):11-13.
Google Scholar
XU Qun, CHEN Guoming, WANG Guodong, et al. Riserless marine drilling technology[J]. Drlling & Production Technology, 2011,34(1):11-13.
Google Scholar
|
[13] |
[13] 高本金,陈国明,殷志明等.深水无隔水管钻井液回收钻井技术[J].石油钻采工艺,2009,31(2):44-47.
Google Scholar
GAO Benjin, CHEN Guoming, YIN Zhiming, et al. Deepwater riserless mud recovery drilling technology[J]. Oil Drilling & Production Technology, 2009,31(2):44-47.
Google Scholar
|
[14] |
[14] 王偲,谢文卫,张伟,等.RMR技术在海域天然气水合物钻探中的适应性分析[J].钻探工程(岩土钻掘工程),2020,47(2):17-23.
Google Scholar
WANG Cai, XIE Wenwei, ZHANG Wei, et al. Adaptability of RMR for marine gas hydrate drilling[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2020,47(2):17-23.
Google Scholar
|
[15] |
[15] 陈浩文,于彦江,王艳丽,等.气举技术应用于深海无隔水管泥浆回收钻井工艺可行性分析[J].钻探工程,2022,49(2):9-15.
Google Scholar
CHEN Haowen, YU Yanjiang, WANG Yanli, et al. Feasibility analysis of gas lift technology for application in deep-sea riserless mud recovery drilling[J]. Drilling Engineering, 2022,49(2):9-15.
Google Scholar
|
[16] |
[16] Hinton A J, Nolan T, Tilley V, et al. Taming the grebe sand-tophole drilling success in the Ichthys field[C]. Asia Pacific Oil and Gas Conference & Exhibition. Jakarta, Indonesia: SPE, 2009:1-6.
Google Scholar
|
[17] |
[17] Myers Greg. Ultra-deepwater riserless mud circulation with dual gradient drilling[J]. Scientific Drilling, 2008,6(6):48-51.
Google Scholar
|
[18] |
[18] 张云腾.水合物SMD钻井系统海底泵模块设计与配置研究[D].青岛:中国石油大学(华东),2017.ZHANG Yunteng. Design and equipment configuration research on subsea pump module of SMD for marine gas hydrate exploration[D]. Qingdao: China University of Petroleum (East China), 2017.
Google Scholar
|
[19] |
[19] Brown J D, Urvant V V, Thorogood J L, et al. Deployment of a riserless mud recovery system in offshore Sakhalin Island[C]//SPE/IADC 105212, SPE/IADC Drilling Conference, Amsterdam, 2007:20-22.
Google Scholar
|
[20] |
[20] Rezk R. Safe and clean marine drilling with implementation of riserless mud recovery technology-RMR[C]//SPE Arctic and Extreme Environments Technical Conference and Exhibition. Moscow, Russia: SPE, 2013:1-7.
Google Scholar
|
[21] |
[21] Peyton J, McPhee A, Eikemo B, et al. World first: Drilling with casing and riserless mud recovery[C]//International Petroleum Technology Conference. 2013.
Google Scholar
|
[22] |
[22] Smith D, Winters W, Tarr B, et al. Deepwater riserless mud return system for dual gradient tophole drilling[C]//SPE/IADC Managed Pressure Drilling and Underbalanced Operations Conference and Exhibition. Kuala Lumpur, Malaysia: SPE/IADC, 2010:1-22.
Google Scholar
|
[23] |
[23] Cohen J H, Kleppe J, Grønås T, et al. Gulf of Mexico’s first application of riserless mud recovery for top-hole drilling: A case study[C]//Offshore Technology Conference. Houston, Texas, USA: OTC, 2010:1-13.
Google Scholar
|
[24] |
[24] Scanlon T. Environmentally-improved method of drilling top-hole sections offshore brasil using dual-gradient drilling techniques for the first time in Brasil[C]//OTC Brasil. Rio de Janeiro, Brazil: OTC, 2011:1-18.
Google Scholar
|
[25] |
[25] Claudey E, Fossli B, Elahifar B, et al. Experience using managed pressure cementing techniques with riserless mud recovery and controlled mud level in the barents sea[C]//SPE Norway One Day Seminar. Bergen, Norway: SPE, 2018:1-18.
Google Scholar
|
[26] |
[26] 刘杰.无隔水管泥浆返回钻井系统水力学计算及吸入模块设计[D].青岛:中国石油大学(华东),2010.LIU Jie. Hydraulics Calculation and suction module design for riserless mud recovery drilling system[D]. Qingdao: China University of Petroleum (East China), 2010.
Google Scholar
|
[27] |
[27] 徐群.海底泥浆举升钻井系统吸入模块样机研究与开发[D]. 青岛:中国石油大学(华东), 2011.XU Qun. Prototype research and development of the subsea mud suction module[D]. Qingdao: China University of Petroleum (East China), 2011.
Google Scholar
|
[28] |
[28] 刘玉亮.海底泥浆举升钻井吸入模块耐久性研究[D].青岛:中国石油大学(华东),2013.LIU Yuliang. Study on durability of the suction module for subsea mudlift drilling system[D]. Qingdao: China University of Petroleum (East China), 2013.
Google Scholar
|
[29] |
[29] 王志伟.大洋勘探船无隔水管泥浆闭式循环钻井系统设计研究[D].青岛:中国石油大学(华东),2019.WANG Zhiwei. Design and Study on the riserless mud recovery drilling system for the ocean exploration ship[D]. Qingdao: China University of Petroleum (East China), 2019.
Google Scholar
|
[30] |
[30] 秦如雷,冯起赠,陈浩文,等.内波流对井口吸入模块稳定性的影响研究[J].石油机械,2023,51(6):43-49.
Google Scholar
QIN Rulei, FENG Qizeng, CHEN Haowen, et al. Influences of internal wave current on stability of wellhead suction module[J]. China Petroleum Machinery, 2023,51(6):43-49.
Google Scholar
|
[31] |
[31] 王荣耀,陈国明,刘伟,等.内波环境下中间仓单体收放过程中的管柱力学分析[J].中国有色金属学报,2021,31(10):2836-2847.
Google Scholar
WANG Rongyao, CHEN Guoming, LIU Wei, et al. Mechanical analysis of buffer retrieve/deployment operations considering internal solitary waves[J]. The Chinese Journal of Nonferrous Metals, 2021,31(10):2836-2847.
Google Scholar
|
[32] |
[32] 王杰.海洋无隔水管钻井钻柱动力学分析[D].荆州:长江大学,2017.WANG Jie. Analysis on the dynamic of drill string of offshore Riserless Drilling[D]. Jingzhou: School of Mechanical Engineering Yangtze University, 2017.
Google Scholar
|
[33] |
[33] 竺艳蓉.海洋工程波浪力学[M].天津:天津大学出版社,1991.ZHU Yanrong. Wave Mechanics for Ocean Engineering[M].Tianjin: Tianjin University Press, 1991.
Google Scholar
|
[34] |
[34] 戴澍,解德.基于ABAQUS的小尺度桩柱波浪力计算方法[J].固体力学学报,2011,32(S1):288-295.
Google Scholar
DAI Shu, XIE De. An approach for computation of wave load on small dimension pile foundation based on ABAQUS[J]. Chinese Journal of Solid Mechanics, 2011,32(S1):288-295.
Google Scholar
|
[35] |
[35] 马良.对莫里森方程中曳力系数CD浅析[J].中国海洋平台,1998,13(3):16-18.
Google Scholar
MA Liang. Analysis of drag coefficient CD in Morison equation[J]. China Offshore Platform, 1998,13(3):16-18.
Google Scholar
|
[36] |
[36] 畅元江,马海艇,王仕超,等.一种适用于水下井口力学分析的新型砂土p-y模型[J].天然气工业,2022,42(11):88-97.
Google Scholar
CHANG Yuanjiang, MA Haiting, WANG Shichao, et al. A new sand p-y model for underwater wellhead mechanical analysis[J]. Natural Gas Industry, 2022,42(11):88-97.
Google Scholar
|
[37] |
[37] 苏静波,邵国建,刘宁.基于P-Y曲线法的水平受荷桩非线性有限元分析[J].岩土力学,2006(10):1781-1785.
Google Scholar
SU Jingbo, SHAO Guojian, LIU Ning. Nonlinear finite element analysis of piles under lateral load based on P-Y curves[J]. Rock and Soil Mechanics, 2006(10):1781-1785.
Google Scholar
|
[38] |
[38] 胡胜刚.基于P-Y曲线模型的桩基非线性性状分析研究[D].武汉:武汉理工大学,2005.HU Shenggang. Study on the non-linear properties of pile based on P-Y curve model[D]. Wuhan: Wuhan University of Technology, 2005.
Google Scholar
|
[39] |
[39] Qin Rulei, Xu Benchong, Chen Haowen, et al. Qualitative and quantitative analysis of the stability of conductors in riserless mud recovery system[J]. Energies, 2022(15):7657.
Google Scholar
|
[40] |
[40] 关德,闫伟.深水钻井水下井口稳定性分析[J].石油机械,2012,40(8):85-89.
Google Scholar
GUAN De, YAN Wei. Stability analysis of underwater wellhead in deepwater drilling[J]. China Petroleum Machinery, 2012,40(8):85-89.
Google Scholar
|