[1]
|
朱喜,王贵玲,马峰,等.雄安新区地热资源潜力评价[J].地球科学,2023,48(3):1093-1106.
Google Scholar
ZHU Xi, WANG Guiling, MA Feng, et al. Evaluation of the geothermal resource of the Xiong’an New Area[J]. Earth Science. 2023,48(3):1093-1106.
Google Scholar
|
[2] |
[2] 马青芳.钻井液冷却技术及装备综述[J].石油机械,2016,44(10):42-46.
Google Scholar
MA Qingfang. Discussion on drilling fluid cooling technology and equipment[J]. China Petroleum Machinery. 2016,44(10):42-46.
Google Scholar
|
[3] |
[3] 马岩,邢希金.天然气水合物钻井液冷却技术进展[J].非常规油气,2016,3(1):82-86.
Google Scholar
MA Yan, XING Xijin. Development of mud cooling technology for gas hydrate drilling[J]. Unconventional Oil & Gas, 2016,3(1):82-86.
Google Scholar
|
[4] |
[4] 王兴忠,杨昌学.DZK02地热钻井技术实践[J].西部探矿工程,2020,32(4):58-62.
Google Scholar
WANG Xingzhong, Yang Changxue. Practice of DZK02 geothermal drilling technology[J]. West-China Exploration Engineering, 2020,32(4):58-62.
Google Scholar
|
[5] |
[5] 刘彪,李双贵,杨明合,等.钻井液温度控制技术研究进展[J].化学工程师,2019,33(1):42-44,59.
Google Scholar
LIU Biao, LI Shuanggui, YANG Minghe, et al. Research progress on drilling fluid temperature control technology[J]. Chemical Engineer, 2019,33(1):42-44,59.
Google Scholar
|
[6] |
[6] 赵江鹏.天然气水合物钻控泥浆制冷系统及孔底冷冻机构传热数值模拟[D].长春:吉林大学,2011.ZHAO Jiangpeng. Research on mud cooling system and simulation of down-hole freezing mechanism for gas hydrate core drilling[D]. Changchun: Jilin University, 2011.
Google Scholar
|
[7] |
[7] Saito S. The drilling experience of K6-2, the high-temperature and crooked geothermal well in Kakkonda, Japan[J]. Journal of Energy Resources Technology, 1993,115(2):117-123.
Google Scholar
|
[8] |
[8] Saito S, Sakuma S. Frontier geothermal drilling operations succeed at 500℃ BHST[J]. SPE Drilling & Completion, 2000,15(3):152-161.
Google Scholar
|
[9] |
[9] 何跃文,杨雄文,高雁,等.北美地热井高温硬岩钻井技术[J].钻探工程,2022,49(1):79-87.
Google Scholar
He David, Yang Xiongwen, Yan Gao, et al. North America geothermal high temperature hard rock drilling technology[J]. Drilling Engineering, 2022,49(1):79-87.
Google Scholar
|
[10] |
[10] Champness E. Drilling fluid cooling system: U.S. Patent 4,215,753[P]. 1980-08-05.
Google Scholar
|
[11] |
[11] 赵江鹏,孙友宏,郭威.钻井泥浆冷却技术发展现状与新型泥浆冷却系统的研究[J].探矿工程(岩土钻掘工程),2010,37(9):1-5.
Google Scholar
ZHAO Jiangpeng, SUN Youhong, GUO Wei. Current situation of drilling mud cooling technology and research on a new type of drilling mud cooling system[J]. Exploration Engineering (Rock & Soil Drilling and Tunnelling), 2010,37(9):1-5.
Google Scholar
|
[12] |
[12] Dorry K E, Coit A, Gutierrez C G, et al. Drilling mud cooler opens up new automated drilling markets in hot hole applications[C]//SPE/IADC Drilling Conference & Exhibition, 2015.
Google Scholar
|
[13] |
[13] McCraw G. Closed loop drilling mud cooling system for land-based drilling operations: U.S. Patent Application 16/026,516[P]. 2018-11-08.
Google Scholar
|
[14] |
[14] 张贵磊.钻井液海水冷却器换热设计计算与应用[J].自动化技术与应用,2020,39(1):9-12.
Google Scholar
ZHANG Guilei. Design calculation and application of heat exchanger for drilling fluid seawater cooler[J]. Techniques of Automation and Applications, 2020,39(1):9-12.
Google Scholar
|
[15] |
[15] 李亚伟,王斌斌,董怀荣,等.钻井液地面冷却系统方案设计及关键参数计算[J].中外能源,2020,25(S1):117-122.
Google Scholar
LI Yawei, WANG Binbin, DONG Huairong, et al. Design of drilling fluid surface cooling system and calculation of key parameters[J]. Sino-Global Energy, 2020,25(S1):117-122.
Google Scholar
|
[16] |
[16] 刘世滨,李明龙,丁辉,等.钻井液、泥浆强制冷却装置:CN203925357U[P].2014-11-05.
Google Scholar
LIU Shibin, LI Minglong, DING Hui, et al. Forced cooling device for drilling fluid and mud:CN203925357U[P]. 2014-11-05.
Google Scholar
|
[17] |
[17] 刘世滨,尹记雷,李明龙,等.陆地钻机钻井液、泥浆强制冷却装置:CN203978347U[P].
Google Scholar
2014-12-03LIU Shibin, YIN Jilei, LI Minglong, et al. Land drilling fluid, mud forced cooling device: CN203978347U[P]. 2014-12-03
Google Scholar
|
[18] |
[18] 刘均一,陈二丁,赵红香,等.相变材料在高温深井钻井液降温技术中的前瞻研究[C]//2020油气田勘探与开发国际会议论文集,2020:1180-1188.
Google Scholar
LIU Junyi, CHEN Erding, ZHAO Hongxiang, et al. Prospective study of phase change materials in deep well drilling fluid cooling technology[C]//IFEDC Organizing Committee, 2020:1180-1188.
Google Scholar
|
[19] |
[19] 孙兰义,马占华,王志刚,等.换热器工艺设计[M].北京:中国石化出版社,2015SUN Lanyi, MA Zhanhua, WANG Zhigang, et al. Process Design of Heat Exchanger[M]. Beijing: China Petrochemical Press, 2015.
Google Scholar
|
[20] |
[20] 胡童颖,董向宇,冉恒谦,等.地热井钻井液对井壁温度分布的影响研究[J].探矿工程(岩土钻掘工程),2020,47(1):20-25.
Google Scholar
HU Tongying, DONG Xiangyu, RAN Hengqian, et al. Study on influence of drilling fluids on temperature distribution over the borehole wall in geothermal wells[J]. Exploration Engineering (Rock & Soil Drilling and Tunnelling), 2020,47(1):20-25.
Google Scholar
|
[21] |
[21] 赖周平,张荣克.空气冷却器[M].北京:中国石化出版社,2010.LAI Zhouping, ZHANG Rongke. Air Cooler[M]. Beijing: China Petrochemical Press, 2010.
Google Scholar
|
[22] |
[22] JTG/T D81—2006,公路交通安全设施设计细则[S].JTG/T D81—2006, Guidelines for design of highway safety facilities[S].
Google Scholar
|
[23] |
[23] 刘卫卫.螺纹管式泥浆制冷换热器研究[D].长春:吉林大学,2014.LIU Weiwei. Research on threaded pipe heat exchanger for refrigerating mud[D]. Changchun: Jilin University, 2014.
Google Scholar
|
[24] |
[24] 赵帅,孙友宏,郭威,等.天然气水合物泥浆制冷换热器的分析[J].制冷学报,2017,38(1):80-87.
Google Scholar
ZHAO Shuai, SUN Youhong, GUO Wei, et al. Research on heat exchanger of gas hydrate mud cooling system[J]. Journal of Refrigeration, 2017,38(1):80-87.
Google Scholar
|
[25] |
[25] 钱颂文.换热器设计手册[M].北京:化学工业出版社,2002.QIAN Songwen. Heat Exchanger Design Handbook[M]. Beijing: Chemical Industry Press, 2002.
Google Scholar
|
[26] |
[26] 孟雪,荆恒铸,曹真真,等.基于Aspen EDR的管壳式换热器的设计[J].化工进展,2019,38(S1):3.MEGN Xue, JING Hengzhu, CAO Zhenzhen, et al. Design of shell and tube heat exchanger based on Aspen EDR[J]. Chemical Industry and Engineering Progress, 2019,38(S1):3.
Google Scholar
|
[27] |
[27] 徐谦,吉春正,蒋永旭,等.溴化锂吸收式冷水机在客船上的运用[J].船舶工程,2021,43(S1):278-281.
Google Scholar
XU Qian, JI Chunzheng, JIANG Yongxu, et al. Application of LiBr absorption chiller on passenger ship[J]. Chinese Journal of Refrigeration Technology, 2021,43(S1):278-281.
Google Scholar
|