Geological Publishing House, Institute of Exploration Technology, Chinese Academy of Geological SciencesHost
2023 Vol. 50, No. 3
Article Contents

FENG Haoxin, JIA Rui, SUN Siyuan, TANG Gege, FAN Yueshuai and ZENG Xuezhi, . 2023. Design and simulation of a high-efficiency cooling system for high temperature drilling fluid. DRILLING ENGINEERING, 50(3): 106-115. doi: 10.12143/j.ztgc.2023.03.014
Citation: FENG Haoxin, JIA Rui, SUN Siyuan, TANG Gege, FAN Yueshuai and ZENG Xuezhi, . 2023. Design and simulation of a high-efficiency cooling system for high temperature drilling fluid. DRILLING ENGINEERING, 50(3): 106-115. doi: 10.12143/j.ztgc.2023.03.014

Design and simulation of a high-efficiency cooling system for high temperature drilling fluid

More Information
  • With the increasing depth of the oil and gas well and the increasing of geothermal drilling, the problem of high temperature drilling fluid is becoming more and more prominent. In the drilling process, it is very necessary to timely cool drilling fluid and make it reach the appropriate temperature for safety drilling. This paper summarizes the cooling ways and characteristics of the current frequently-used high temperature drilling fluid. In regard to the energy-saving characteristics of air cooling and the advantage of high cooling efficiency of the coolant with forced cooling, a high efficient cooling system for high temperature mud is put forward. The air cooler and the tube and shell heat exchanger in the cooling system are designed, checked and simulated, and the reliability of the design is also verified. As a result, the high temperature drilling fluid at 80 ℃ and 1800 L/min can be cooled below 40 ℃ using the cooling system. At the same time, the cooling effect at different drilling fluid temperature, different drilling fluid flow rate and different air temperature conditions is also discussed.
  • 加载中
  • [1] 朱喜,王贵玲,马峰,等.雄安新区地热资源潜力评价[J].地球科学,2023,48(3):1093-1106.

    Google Scholar

    ZHU Xi, WANG Guiling, MA Feng, et al. Evaluation of the geothermal resource of the Xiong’an New Area[J]. Earth Science. 2023,48(3):1093-1106.

    Google Scholar

    [2] [2] 马青芳.钻井液冷却技术及装备综述[J].石油机械,2016,44(10):42-46.

    Google Scholar

    MA Qingfang. Discussion on drilling fluid cooling technology and equipment[J]. China Petroleum Machinery. 2016,44(10):42-46.

    Google Scholar

    [3] [3] 马岩,邢希金.天然气水合物钻井液冷却技术进展[J].非常规油气,2016,3(1):82-86.

    Google Scholar

    MA Yan, XING Xijin. Development of mud cooling technology for gas hydrate drilling[J]. Unconventional Oil & Gas, 2016,3(1):82-86.

    Google Scholar

    [4] [4] 王兴忠,杨昌学.DZK02地热钻井技术实践[J].西部探矿工程,2020,32(4):58-62.

    Google Scholar

    WANG Xingzhong, Yang Changxue. Practice of DZK02 geothermal drilling technology[J]. West-China Exploration Engineering, 2020,32(4):58-62.

    Google Scholar

    [5] [5] 刘彪,李双贵,杨明合,等.钻井液温度控制技术研究进展[J].化学工程师,2019,33(1):42-44,59.

    Google Scholar

    LIU Biao, LI Shuanggui, YANG Minghe, et al. Research progress on drilling fluid temperature control technology[J]. Chemical Engineer, 2019,33(1):42-44,59.

    Google Scholar

    [6] [6] 赵江鹏.天然气水合物钻控泥浆制冷系统及孔底冷冻机构传热数值模拟[D].长春:吉林大学,2011.ZHAO Jiangpeng. Research on mud cooling system and simulation of down-hole freezing mechanism for gas hydrate core drilling[D]. Changchun: Jilin University, 2011.

    Google Scholar

    [7] [7] Saito S. The drilling experience of K6-2, the high-temperature and crooked geothermal well in Kakkonda, Japan[J]. Journal of Energy Resources Technology, 1993,115(2):117-123.

    Google Scholar

    [8] [8] Saito S, Sakuma S. Frontier geothermal drilling operations succeed at 500℃ BHST[J]. SPE Drilling & Completion, 2000,15(3):152-161.

    Google Scholar

    [9] [9] 何跃文,杨雄文,高雁,等.北美地热井高温硬岩钻井技术[J].钻探工程,2022,49(1):79-87.

    Google Scholar

    He David, Yang Xiongwen, Yan Gao, et al. North America geothermal high temperature hard rock drilling technology[J]. Drilling Engineering, 2022,49(1):79-87.

    Google Scholar

    [10] [10] Champness E. Drilling fluid cooling system: U.S. Patent 4215753[P]. 1980-08-05.

    Google Scholar

    [11] [11] 赵江鹏,孙友宏,郭威.钻井泥浆冷却技术发展现状与新型泥浆冷却系统的研究[J].探矿工程(岩土钻掘工程),2010,37(9):1-5.

    Google Scholar

    ZHAO Jiangpeng, SUN Youhong, GUO Wei. Current situation of drilling mud cooling technology and research on a new type of drilling mud cooling system[J]. Exploration Engineering (Rock & Soil Drilling and Tunnelling), 2010,37(9):1-5.

    Google Scholar

    [12] [12] Dorry K E, Coit A, Gutierrez C G, et al. Drilling mud cooler opens up new automated drilling markets in hot hole applications[C]//SPE/IADC Drilling Conference & Exhibition, 2015.

    Google Scholar

    [13] [13] McCraw G. Closed loop drilling mud cooling system for land-based drilling operations: U.S. Patent Application 16/026516[P]. 2018-11-08.

    Google Scholar

    [14] [14] 张贵磊.钻井液海水冷却器换热设计计算与应用[J].自动化技术与应用,2020,39(1):9-12.

    Google Scholar

    ZHANG Guilei. Design calculation and application of heat exchanger for drilling fluid seawater cooler[J]. Techniques of Automation and Applications, 2020,39(1):9-12.

    Google Scholar

    [15] [15] 李亚伟,王斌斌,董怀荣,等.钻井液地面冷却系统方案设计及关键参数计算[J].中外能源,2020,25(S1):117-122.

    Google Scholar

    LI Yawei, WANG Binbin, DONG Huairong, et al. Design of drilling fluid surface cooling system and calculation of key parameters[J]. Sino-Global Energy, 2020,25(S1):117-122.

    Google Scholar

    [16] [16] 刘世滨,李明龙,丁辉,等.钻井液、泥浆强制冷却装置:CN203925357U[P].2014-11-05.

    Google Scholar

    LIU Shibin, LI Minglong, DING Hui, et al. Forced cooling device for drilling fluid and mud:CN203925357U[P]. 2014-11-05.

    Google Scholar

    [17] [17] 刘世滨,尹记雷,李明龙,等.陆地钻机钻井液、泥浆强制冷却装置:CN203978347U[P].

    Google Scholar

    2014-12-03
    LIU Shibin, YIN Jilei, LI Minglong, et al. Land drilling fluid, mud forced cooling device: CN203978347U[P]. 2014-12-03

    Google Scholar

    [18] [18] 刘均一,陈二丁,赵红香,等.相变材料在高温深井钻井液降温技术中的前瞻研究[C]//2020油气田勘探与开发国际会议论文集,2020:1180-1188.

    Google Scholar

    LIU Junyi, CHEN Erding, ZHAO Hongxiang, et al. Prospective study of phase change materials in deep well drilling fluid cooling technology[C]//IFEDC Organizing Committee, 2020:1180-1188.

    Google Scholar

    [19] [19] 孙兰义,马占华,王志刚,等.换热器工艺设计[M].北京:中国石化出版社,2015SUN Lanyi, MA Zhanhua, WANG Zhigang, et al. Process Design of Heat Exchanger[M]. Beijing: China Petrochemical Press, 2015.

    Google Scholar

    [20] [20] 胡童颖,董向宇,冉恒谦,等.地热井钻井液对井壁温度分布的影响研究[J].探矿工程(岩土钻掘工程),2020,47(1):20-25.

    Google Scholar

    HU Tongying, DONG Xiangyu, RAN Hengqian, et al. Study on influence of drilling fluids on temperature distribution over the borehole wall in geothermal wells[J]. Exploration Engineering (Rock & Soil Drilling and Tunnelling), 2020,47(1):20-25.

    Google Scholar

    [21] [21] 赖周平,张荣克.空气冷却器[M].北京:中国石化出版社,2010.LAI Zhouping, ZHANG Rongke. Air Cooler[M]. Beijing: China Petrochemical Press, 2010.

    Google Scholar

    [22] [22] JTG/T D81—2006,公路交通安全设施设计细则[S].JTG/T D81—2006, Guidelines for design of highway safety facilities[S].

    Google Scholar

    [23] [23] 刘卫卫.螺纹管式泥浆制冷换热器研究[D].长春:吉林大学,2014.LIU Weiwei. Research on threaded pipe heat exchanger for refrigerating mud[D]. Changchun: Jilin University, 2014.

    Google Scholar

    [24] [24] 赵帅,孙友宏,郭威,等.天然气水合物泥浆制冷换热器的分析[J].制冷学报,2017,38(1):80-87.

    Google Scholar

    ZHAO Shuai, SUN Youhong, GUO Wei, et al. Research on heat exchanger of gas hydrate mud cooling system[J]. Journal of Refrigeration, 2017,38(1):80-87.

    Google Scholar

    [25] [25] 钱颂文.换热器设计手册[M].北京:化学工业出版社,2002.QIAN Songwen. Heat Exchanger Design Handbook[M]. Beijing: Chemical Industry Press, 2002.

    Google Scholar

    [26] [26] 孟雪,荆恒铸,曹真真,等.基于Aspen EDR的管壳式换热器的设计[J].化工进展,2019,38(S1):3.MEGN Xue, JING Hengzhu, CAO Zhenzhen, et al. Design of shell and tube heat exchanger based on Aspen EDR[J]. Chemical Industry and Engineering Progress, 2019,38(S1):3.

    Google Scholar

    [27] [27] 徐谦,吉春正,蒋永旭,等.溴化锂吸收式冷水机在客船上的运用[J].船舶工程,2021,43(S1):278-281.

    Google Scholar

    XU Qian, JI Chunzheng, JIANG Yongxu, et al. Application of LiBr absorption chiller on passenger ship[J]. Chinese Journal of Refrigeration Technology, 2021,43(S1):278-281.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(721) PDF downloads(141) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint