[1]
|
薛洪松,朱雅倩,刘希胜,等.暗挖车站洞内地下连续墙施工导洞环境效应分析[J].科学技术与工程,2021,21(24):10440-10451.
Google Scholar
XUE Hongsong, ZHU Yaqian, LIU Xisheng, et al, Analysis of environmental effect of pilot tunnel for diaphragm wall construction in excavated stations[J]. Science Technology and Engineering, 2021,21(24):10440-10451.
Google Scholar
|
[2] |
[2] 殷俊鹏,张啸,阮怀宁,等.基坑开挖对T型地下连续墙水平位移的影响[J].科学技术与工程,2017,17(7):232-236.
Google Scholar
YIN Junpeng, ZHANG Xiao, RUAN Huaining, et al. Effect of excavation on horizontal displacement of T-type diaphragm wall[J]. Science Technology and Engineering, 2017,17(7):232-236.
Google Scholar
|
[3] |
[3] 卢鑫.T型地下连续墙槽壁稳定性及变形研究[D].广州:华南理工大学,2013.LU Xin. Study on the deformation and stability of T-shaped diaphragm wall panel trench[D]. Guangzhou: South China University of Technology, 2013.
Google Scholar
|
[4] |
[4] 邱明明,杨果林,申权,等.深厚砂层地下连续墙槽壁稳定性特征及影响因素研究[J].铁道科学与工程学报,2020,17(5):1129-1139.
Google Scholar
QIU Mingming, YANG Guolin, SHEN Quan, et al. Study on characteristics and influence factors of slurry trench stability of diaphragm wall in deep sandy stratum[J]. Journal of Railway Science and Engineering, 2020,17(5):1129-1139.
Google Scholar
|
[5] |
[5] 刘海卿,于海峰,于波.深层地下连续墙槽壁稳定机理研究[J].科学技术与工程,2006,6(8):1011-1013.
Google Scholar
LIU Haiqing, YU Haifeng, YU Bo. Stability mechanism analysis of groove lnside of continuous underground wall[J]. Science Technology and Engineering, 2006,6(8):1011-1013.
Google Scholar
|
[6] |
[6] 李志忠.富水砂卵地层连续墙槽壁稳定性与施工技术研究[D].长沙:中南大学,2014.LI Zhizhong. Study on stability of diaphragm wall construction in water-rich sandy pebble strata[D]. Changsha: Central South University, 2014.
Google Scholar
|
[7] |
[7] 王启云,林华明,臧万军,等.深厚软弱地层地下连续墙槽壁稳定性分析[J].科学技术与工程,2018,18(35):58-64.
Google Scholar
WANG Qiyun, LIN Huaming, ZANG Wanjun, et al. Stability analysis of trench of diaphragm wall in deep water-soaked soft stratum[J]. Science Technology and Engineering, 2018,18(35):58-64.
Google Scholar
|
[8] |
[8] 杜志云,冯庆元.复杂地质条件下超深地下连续墙槽壁稳定性分析[J].地下空间与工程学报,2020,16(S2):856-863.
Google Scholar
DU Zhiyun, FENG Qingyuan. Extra-deep diaphragm wall trench stabilities analysis under multiply geological ground condition[J]. Chinese Journal of Underground Space and Engineering, 2020,16(S2):856-863.
Google Scholar
|
[9] |
[9] 夏小刚,张子洋,刘济遥.富水砂卵地层地下连续墙槽壁稳定性影响因素数值分析[J].西部探矿工程,2020,32(1):7-11.
Google Scholar
XIA Xiaogang, ZHANG Ziyang, LIU Jiyao. Numerical analysis of factors affecting the stability of underground continuous wall slot in water rich sand egg formation[J]. West-China Exploration Engineering, 2020,32(1):7-11.
Google Scholar
|
[10] |
[10] 姜厚停,周秀普,李志强,等.厚卵石地层地下连续墙槽壁失稳机理及护壁泥浆性能研究[J].市政技术,2019,37(6):220-223.
Google Scholar
JIANG Houting, ZHOU Xiupu, LI Zhiqiang, et al. Study on instability mechanism of diaphragm wall and the performance of wall-protecting slurry in thick pebble formation[J]. Municipal Engineering Technology, 2019,37(6):220-223.
Google Scholar
|
[11] |
[11] 丁勇春,李光辉,程泽坤,等.地下连续墙成槽施工槽壁稳定机制分析[J].岩石力学与工程学报,2013,32(S1):2704-2709.
Google Scholar
DING Yongchun, LI Guanghui, CHENG Zekun, et al. Analysis of trench face stability of diaphragm wall panel during slurry trenching[J]. Chinese Journal of Rock Mechanics and Engineering, 2013,32(S1):2704-2709.
Google Scholar
|
[12] |
[12] 李伟,白英睿,李雨桐,等.钻井液堵漏材料研究及应用现状与堵漏技术对策[J].科学技术与工程,2021,21(12):4733-4743.
Google Scholar
LI Wei, BAI Yingrui, LI Yutong, et al. Research and application progress of drilling fluid lost circulation materials and technical countermeasures for lost circulation control[J]. Science Technology and Engineering, 2021,21(12):4733-4743.
Google Scholar
|
[13] |
[13] 王胜,吴丽钰,蒋贵,等.深孔纳米复合水泥基护壁堵漏材料研究[J].钻探工程,2021,48(12):7-13.
Google Scholar
WANG Sheng, WU Liyu, JIANG Gui, et al. Nano composite cement based wellbore protection and plugging materials for deep drilling[J]. Drilling Engineering, 2021,48(12):7-13.
Google Scholar
|
[14] |
[14] 周生伟,孙平贺,苏卫锋,等.玄武岩纤维堵漏体系在高海拔非开挖钻进中的应用研究[J].钻探工程,2022,49(3):139-145.
Google Scholar
ZHOU Shengwei, SUN Pinghe, SU Weifeng, et al. Use of basalt fiber drilling fluid in trenchless works at high altitudes[J]. Drilling Engineering, 2022,49(3):139-145.
Google Scholar
|
[15] |
[15] 张希文,李爽,张洁,等.钻井液堵漏材料及防漏堵漏技术研究进展[J].钻井液与完井液,2009,26(6):74-76,79.
Google Scholar
ZHANG Xiwen, LI Shuang, ZHANG Jie, et al. Research progress on lost circulation materials and lost circulation control technology[J]. Drilling Fluid & Completion Fluid, 2009,26(6):74-76,79.
Google Scholar
|
[16] |
[16] 张新民,聂勋勇,王平全,等.特种凝胶在钻井堵漏中的应用[J].钻井液与完井液,2007,24(5):83-84,94.
Google Scholar
ZHANG Xinmin, NIE Xunyong, WANG Pingquan, et al. A special gel for mud loss control[J]. Drilling Fluid & Completion Fluid, 2007,24(5):83-84,94.
Google Scholar
|
[17] |
[17] Zhao G, Dai C, You Q, et al. Study on formation of gels formed by polymer and zirconium acetate[J]. Journal of Sol-Gel Science and Technology, 2013,65(3):392-398.
Google Scholar
|
[18] |
[18] Singh R, Mahto V. Synthesis, characterization and evaluation of polyacrylamide graft starch/clay nanocomposite hydrogel system for enhanced oil recovery[J]. Petroleum Science, 2017,14(4):765-779.
Google Scholar
|
[19] |
[19] Liu D, Shi X, Zhong X, et al. Properties and plugging behaviors of smectite-superfine cement dispersion using as water shutoff in heavy oil reservoir[J]. Applied Clay Science, 2017,147: 160-147.
Google Scholar
|
[20] |
[20] Hajri S, Mahmood S, Akbari S, et al. Gelation behavior as a function of concentration of sodium thiosulfate for PAM gels cross-inked with chromium[J]. Journal of Petroleum Exploration and Production Technology, 2019,9(2):1539-1546.
Google Scholar
|
[21] |
[21] 赵毅,马盼盼,刘雷明.不同粒径废玻璃粉水泥胶砂力学性能试验研究[J].建筑科学,2019,35(7):86-89.
Google Scholar
ZHAO Yi, MA Panpan, LIU Leiming. Experimental study on mechanical properties of cement mortar mixed with different diameter-waste glass powder[J]. Building Science, 2019,35(7):86-89.
Google Scholar
|
[22] |
[22] 徐迅,许园园.矿物掺合料对硫氧镁水泥性能的影响研究[J].建筑科学,2018,34(7):85-90.
Google Scholar
XU Xun, XU Yuanyuan. Study on effect of mineral admixture on the properties magnesium oxysulfate cement[J]. Building Science, 2018,34(7):85-90.
Google Scholar
|
[23] |
[23] 陈念.木质素基阳离子聚丙烯酰胺絮凝剂的制备及其在水处理中的应用[D].广州:华南理工大学,2020.CHEN Lian. Preparation of lignin-based cationic polyacrylamide flocculant and its application for water flocculation[D]. Guangzhou: South China University of Technology, 2020.
Google Scholar
|
[24] |
[24] 陈军,陈小龙.低成本延迟交联凝胶堵漏体系研究[J].山东化工,2020,49(6):141-144,147.
Google Scholar
CHEN Jun, CHEN Xiaolong. Study on a low-cost delayed crosslinking gel loss circulation system[J]. Shandong Chemical Industry, 2020,49(6):141-144,147.
Google Scholar
|
[25] |
[25] Zhang S, Guo J, Gu Y, et al. Polyacrylamide gel formed by Cr(III) and phenolic resin for water control in high-temperature reservoirs[J]. Journal of Petroleum Science and Engineering, 2020,194:107423.
Google Scholar
|
[26] |
[26] Bai B, Zhou J, Yin M. A comprehensive review of polyacrylamide polymer gels for conformance control[J]. Petroleum Exploration and Development, 2015,42(4):525-532.
Google Scholar
|