Geological Publishing House, Institute of Exploration Technology, Chinese Academy of Geological SciencesHost
2023 Vol. 50, No. 1
Article Contents

HE Xin, WANG Sheng, HE Ye, ZHOU Changjun, XIE Chengchao, TANG Qingdong and LI Shouxin, . 2023. Development and mechanism of plugging gel for water-rich sand and gravel formations. DRILLING ENGINEERING, 50(1): 142-149. doi: 10.12143/j.ztgc.2023.01.020
Citation: HE Xin, WANG Sheng, HE Ye, ZHOU Changjun, XIE Chengchao, TANG Qingdong and LI Shouxin, . 2023. Development and mechanism of plugging gel for water-rich sand and gravel formations. DRILLING ENGINEERING, 50(1): 142-149. doi: 10.12143/j.ztgc.2023.01.020

Development and mechanism of plugging gel for water-rich sand and gravel formations

More Information
  • In view of the collapse of the trench wall and the failure of conventional plugging materials such as cement in the construction of diaphragm walls in water-rich sand and gravel formations, single factor experiment was used to analyze the influence of the gel forming agent (anionic polyacrylamide), the crosslinking agent (chromium crosslinking agent), the reinforcing agent and clay on the properties of polymer gel (gelation time, viscosity, strength and stability) for shallow plugging; and the optimum formulation was obtained by orthogonal test. In addition, the formation mechanism of the gel material was also analyzed. The results show that the reinforcing agent can link the gel-forming agent in gel, and further enhance the strength and stability of gel. Clay can also shorten the cross-linking time and enhance the gel strength, but clay is not conducive to the stability of the slurry. The final optimized formula is: 15% chromium crosslinking agent+5% gelling agent+8% reinforcing agent+7.5% clay. Its performance can meet the plugging requirements of shallow diaphragm walls.
  • 加载中
  • [1] 薛洪松,朱雅倩,刘希胜,等.暗挖车站洞内地下连续墙施工导洞环境效应分析[J].科学技术与工程,2021,21(24):10440-10451.

    Google Scholar

    XUE Hongsong, ZHU Yaqian, LIU Xisheng, et al, Analysis of environmental effect of pilot tunnel for diaphragm wall construction in excavated stations[J]. Science Technology and Engineering, 2021,21(24):10440-10451.

    Google Scholar

    [2] [2] 殷俊鹏,张啸,阮怀宁,等.基坑开挖对T型地下连续墙水平位移的影响[J].科学技术与工程,2017,17(7):232-236.

    Google Scholar

    YIN Junpeng, ZHANG Xiao, RUAN Huaining, et al. Effect of excavation on horizontal displacement of T-type diaphragm wall[J]. Science Technology and Engineering, 2017,17(7):232-236.

    Google Scholar

    [3] [3] 卢鑫.T型地下连续墙槽壁稳定性及变形研究[D].广州:华南理工大学,2013.LU Xin. Study on the deformation and stability of T-shaped diaphragm wall panel trench[D]. Guangzhou: South China University of Technology, 2013.

    Google Scholar

    [4] [4] 邱明明,杨果林,申权,等.深厚砂层地下连续墙槽壁稳定性特征及影响因素研究[J].铁道科学与工程学报,2020,17(5):1129-1139.

    Google Scholar

    QIU Mingming, YANG Guolin, SHEN Quan, et al. Study on characteristics and influence factors of slurry trench stability of diaphragm wall in deep sandy stratum[J]. Journal of Railway Science and Engineering, 2020,17(5):1129-1139.

    Google Scholar

    [5] [5] 刘海卿,于海峰,于波.深层地下连续墙槽壁稳定机理研究[J].科学技术与工程,2006,6(8):1011-1013.

    Google Scholar

    LIU Haiqing, YU Haifeng, YU Bo. Stability mechanism analysis of groove lnside of continuous underground wall[J]. Science Technology and Engineering, 2006,6(8):1011-1013.

    Google Scholar

    [6] [6] 李志忠.富水砂卵地层连续墙槽壁稳定性与施工技术研究[D].长沙:中南大学,2014.LI Zhizhong. Study on stability of diaphragm wall construction in water-rich sandy pebble strata[D]. Changsha: Central South University, 2014.

    Google Scholar

    [7] [7] 王启云,林华明,臧万军,等.深厚软弱地层地下连续墙槽壁稳定性分析[J].科学技术与工程,2018,18(35):58-64.

    Google Scholar

    WANG Qiyun, LIN Huaming, ZANG Wanjun, et al. Stability analysis of trench of diaphragm wall in deep water-soaked soft stratum[J]. Science Technology and Engineering, 2018,18(35):58-64.

    Google Scholar

    [8] [8] 杜志云,冯庆元.复杂地质条件下超深地下连续墙槽壁稳定性分析[J].地下空间与工程学报,2020,16(S2):856-863.

    Google Scholar

    DU Zhiyun, FENG Qingyuan. Extra-deep diaphragm wall trench stabilities analysis under multiply geological ground condition[J]. Chinese Journal of Underground Space and Engineering, 2020,16(S2):856-863.

    Google Scholar

    [9] [9] 夏小刚,张子洋,刘济遥.富水砂卵地层地下连续墙槽壁稳定性影响因素数值分析[J].西部探矿工程,2020,32(1):7-11.

    Google Scholar

    XIA Xiaogang, ZHANG Ziyang, LIU Jiyao. Numerical analysis of factors affecting the stability of underground continuous wall slot in water rich sand egg formation[J]. West-China Exploration Engineering, 2020,32(1):7-11.

    Google Scholar

    [10] [10] 姜厚停,周秀普,李志强,等.厚卵石地层地下连续墙槽壁失稳机理及护壁泥浆性能研究[J].市政技术,2019,37(6):220-223.

    Google Scholar

    JIANG Houting, ZHOU Xiupu, LI Zhiqiang, et al. Study on instability mechanism of diaphragm wall and the performance of wall-protecting slurry in thick pebble formation[J]. Municipal Engineering Technology, 2019,37(6):220-223.

    Google Scholar

    [11] [11] 丁勇春,李光辉,程泽坤,等.地下连续墙成槽施工槽壁稳定机制分析[J].岩石力学与工程学报,2013,32(S1):2704-2709.

    Google Scholar

    DING Yongchun, LI Guanghui, CHENG Zekun, et al. Analysis of trench face stability of diaphragm wall panel during slurry trenching[J]. Chinese Journal of Rock Mechanics and Engineering, 2013,32(S1):2704-2709.

    Google Scholar

    [12] [12] 李伟,白英睿,李雨桐,等.钻井液堵漏材料研究及应用现状与堵漏技术对策[J].科学技术与工程,2021,21(12):4733-4743.

    Google Scholar

    LI Wei, BAI Yingrui, LI Yutong, et al. Research and application progress of drilling fluid lost circulation materials and technical countermeasures for lost circulation control[J]. Science Technology and Engineering, 2021,21(12):4733-4743.

    Google Scholar

    [13] [13] 王胜,吴丽钰,蒋贵,等.深孔纳米复合水泥基护壁堵漏材料研究[J].钻探工程,2021,48(12):7-13.

    Google Scholar

    WANG Sheng, WU Liyu, JIANG Gui, et al. Nano composite cement based wellbore protection and plugging materials for deep drilling[J]. Drilling Engineering, 2021,48(12):7-13.

    Google Scholar

    [14] [14] 周生伟,孙平贺,苏卫锋,等.玄武岩纤维堵漏体系在高海拔非开挖钻进中的应用研究[J].钻探工程,2022,49(3):139-145.

    Google Scholar

    ZHOU Shengwei, SUN Pinghe, SU Weifeng, et al. Use of basalt fiber drilling fluid in trenchless works at high altitudes[J]. Drilling Engineering, 2022,49(3):139-145.

    Google Scholar

    [15] [15] 张希文,李爽,张洁,等.钻井液堵漏材料及防漏堵漏技术研究进展[J].钻井液与完井液,2009,26(6):74-76,79.

    Google Scholar

    ZHANG Xiwen, LI Shuang, ZHANG Jie, et al. Research progress on lost circulation materials and lost circulation control technology[J]. Drilling Fluid & Completion Fluid, 2009,26(6):74-76,79.

    Google Scholar

    [16] [16] 张新民,聂勋勇,王平全,等.特种凝胶在钻井堵漏中的应用[J].钻井液与完井液,2007,24(5):83-84,94.

    Google Scholar

    ZHANG Xinmin, NIE Xunyong, WANG Pingquan, et al. A special gel for mud loss control[J]. Drilling Fluid & Completion Fluid, 2007,24(5):83-84,94.

    Google Scholar

    [17] [17] Zhao G, Dai C, You Q, et al. Study on formation of gels formed by polymer and zirconium acetate[J]. Journal of Sol-Gel Science and Technology, 2013,65(3):392-398.

    Google Scholar

    [18] [18] Singh R, Mahto V. Synthesis, characterization and evaluation of polyacrylamide graft starch/clay nanocomposite hydrogel system for enhanced oil recovery[J]. Petroleum Science, 2017,14(4):765-779.

    Google Scholar

    [19] [19] Liu D, Shi X, Zhong X, et al. Properties and plugging behaviors of smectite-superfine cement dispersion using as water shutoff in heavy oil reservoir[J]. Applied Clay Science, 2017,147: 160-147.

    Google Scholar

    [20] [20] Hajri S, Mahmood S, Akbari S, et al. Gelation behavior as a function of concentration of sodium thiosulfate for PAM gels cross-inked with chromium[J]. Journal of Petroleum Exploration and Production Technology, 2019,9(2):1539-1546.

    Google Scholar

    [21] [21] 赵毅,马盼盼,刘雷明.不同粒径废玻璃粉水泥胶砂力学性能试验研究[J].建筑科学,2019,35(7):86-89.

    Google Scholar

    ZHAO Yi, MA Panpan, LIU Leiming. Experimental study on mechanical properties of cement mortar mixed with different diameter-waste glass powder[J]. Building Science, 2019,35(7):86-89.

    Google Scholar

    [22] [22] 徐迅,许园园.矿物掺合料对硫氧镁水泥性能的影响研究[J].建筑科学,2018,34(7):85-90.

    Google Scholar

    XU Xun, XU Yuanyuan. Study on effect of mineral admixture on the properties magnesium oxysulfate cement[J]. Building Science, 2018,34(7):85-90.

    Google Scholar

    [23] [23] 陈念.木质素基阳离子聚丙烯酰胺絮凝剂的制备及其在水处理中的应用[D].广州:华南理工大学,2020.CHEN Lian. Preparation of lignin-based cationic polyacrylamide flocculant and its application for water flocculation[D]. Guangzhou: South China University of Technology, 2020.

    Google Scholar

    [24] [24] 陈军,陈小龙.低成本延迟交联凝胶堵漏体系研究[J].山东化工,2020,49(6):141-144,147.

    Google Scholar

    CHEN Jun, CHEN Xiaolong. Study on a low-cost delayed crosslinking gel loss circulation system[J]. Shandong Chemical Industry, 2020,49(6):141-144,147.

    Google Scholar

    [25] [25] Zhang S, Guo J, Gu Y, et al. Polyacrylamide gel formed by Cr(III) and phenolic resin for water control in high-temperature reservoirs[J]. Journal of Petroleum Science and Engineering, 2020,194:107423.

    Google Scholar

    [26] [26] Bai B, Zhou J, Yin M. A comprehensive review of polyacrylamide polymer gels for conformance control[J]. Petroleum Exploration and Development, 2015,42(4):525-532.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(279) PDF downloads(48) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint