Geological Publishing House, Institute of Exploration Technology, Chinese Academy of Geological SciencesHost
2023 Vol. 50, No. 1
Article Contents

YANG He, QI Bo, CAO Pinlu, CHEN Baoyi and BO Kun, . 2023. Strength analysis of FGQ-600 type DTH hammer drill bit used for casing while drilling. DRILLING ENGINEERING, 50(1): 115-124. doi: 10.12143/j.ztgc.2023.01.017
Citation: YANG He, QI Bo, CAO Pinlu, CHEN Baoyi and BO Kun, . 2023. Strength analysis of FGQ-600 type DTH hammer drill bit used for casing while drilling. DRILLING ENGINEERING, 50(1): 115-124. doi: 10.12143/j.ztgc.2023.01.017

Strength analysis of FGQ-600 type DTH hammer drill bit used for casing while drilling

More Information
  • The DTH hammer drill bit used for casing while drilling is the main tool of rock breaking and it is one of the important components of air reverse circulation drilling tools. It is widely used in geological hazard control projects. During the drilling process, the drill bit is subjected to alternating impact load, which is prone to stress concentration and fatigue failure. The stress waves generated by the piston collision with the bit propagate to the contact surface of the bit and rock, and cause the superposition of stress waves, which increases the stress on the bit. In order to ensure the normal operation of the drill bit, the strength analysis of FGQ-600 large-diameter DTH hammer drill bit under impact load is carried out by the Finite Element Software. The results show that the von-mise stress increases with impact energy. The maximum equivalent stress on the bit is 808.9MPa at the impact energy of 2500J of the DTH hammer, which is less than the material yield strength and meets the strength requirements. When tripping, the stress on the pin decreases with the increase of its diameter. The maximum stress on the 40mm pin is 383.66MPa, which is less than the material yield strength of 785MPa and meets the strength requirements.The pin appears plastic deformation at the diameter of 16mm; thus, it is recommended that the diameter of the suspension pin should not be less than 20mm.
  • 加载中
  • [1] 王博.复杂山地地质灾害发育特征及其规律研究——以某气田地质灾害区为例[D].徐州:中国矿业大学,2021WANG Bo. Study on the development characteristics and laws of geological disasters in complex mountain areas—Taking a gas field geological disaster area as an example[D]. Xuzhou: China University of Mining and Technology, 2021.

    Google Scholar

    [2] [2] 李建旺.上伏采空区高速公路隧道开挖灾变演化机制及安全控制关键技术研究[D].北京:北京科技大学,2021.LI Jianwang. Research on the catastrophic evolution mechanism and safety control key technology of highway tunnel excavation with upper goaf[D]. Beijing: University of Science and Technology Beijing, 2021.

    Google Scholar

    [3] [3] 王晓闽.滑坡泥石流高维灾害数据特征研究与可视分析[D].北京:北京交通大学,2021.WANG Xiaomin. Feature research and visual analysis of high-dimensional landslide and debris flow disaster data[D]. Beijing: Beijing Jiaotong University, 2021.

    Google Scholar

    [4] [4] 柳新颖.四川巴州松林村滑坡形成机制与治理研究[D].徐州:中国矿业大学,2020.LIU Xinying. Study on formation mechanism and control scheme of landslide in Songlin village, Bazhou district, Sichuan province[D]. Xuzhou: China University of Mining and Technology, 2020.

    Google Scholar

    [5] [5] 刘至伟.大型牵引式土质滑坡灾变机制与防治措施研究[D].南昌:东华理工大学,2021.LIU Zhiwei. Research on disaster mechanism and prevention measures of large tractive soil landslide[D]. Nanchang: East China University of Technology, 2021.

    Google Scholar

    [6] [6] 吴迪.土石混合体力学性质及其边坡稳定性研究[D].徐州:中国矿业大学,2020.WU Di. Study on mechanical properties and stability of earth rock mixture[D]. Xuzhou: China University of Mining and Technology, 2020.

    Google Scholar

    [7] [7] 李兴明.宣恩地区巴东组滑坡灾害识别决策及云平台设计[D].武汉:中国地质大学,2021.LI Xingming. Identification and decision-making for the landslides of Badong formation and its design of cloud platform in Xuanen area[D]. Wuhan: China University of Geosciences, 2021.

    Google Scholar

    [8] [8] 庄生明.潜孔锤跟管钻进套管结构仿真分析研究[D].长春:吉林大学,2012.ZHUANG Shengming. Simulation analysis for casing pipe structure of DTH hammer drilling[D]. Changchun: Jilin University, 2012.

    Google Scholar

    [9] [9] 罗永江.地下多层空区探测钻探技术及工艺研究[D].长春:吉林大学,2016.LUO Yongjiang. Study on the drilling technique for detecting multilayer cavities[D]. Changchun: Jilin University, 2016.

    Google Scholar

    [10] [10] 魏俊.气动冲击潜孔锤动力性能仿真研究[D].荆州:长江大学,2019.WEI Jun. Dynamic performance simulation of pneumatic impact DTH hammer[D]. Jingzhou: Yangtze University, 2019.

    Google Scholar

    [11] [11] Qi B, Cao P, Yang He, et al.Experimental and numerical study on air flow behavior for a novel retractable reverse circulation drill bit of casing-while-drilling (CwD)[J]. Geofluids, 2021, 2021(7, article 04021104):1-12.

    Google Scholar

    [12] [12] 郑治川,殷琨,曹品鲁.HC-15型大直径环状取心潜孔锤钻具结构的改进设计[J].探矿工程(岩土钻掘工程),2007,34(5):40-42.

    Google Scholar

    ZHENG Zhichuan, YIN Kun, CAO Pinlu. Structural improvement design of HC-15 large-diameter dth of annular coring drilling system[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2007,34(5): 40-42.

    Google Scholar

    [13] [13] 易振华,何龙飞,胡志海.大直径贯通式潜孔锤局部气举反循环钻进工艺的试验研究[J].岩土工程技术,2013,26(1):5-8.

    Google Scholar

    YI Zhenhua, HE Longfei, HU Zhihai. Experimental study of local air-lift inverse circulation rotary drilling technology with large diameter hollow-through DTH hammer[J]. Geotechnical Engineering Technique, 2013,26(1):5-8.

    Google Scholar

    [14] [14] 杨达,陈宝义,曹宏宇,等.基于冲击载荷的硬质合金球齿碎岩机理研究[J].钻探工程,2022,49(1):142-152.

    Google Scholar

    YANG Da, CHEN Baoyi, CAO Hongyu, et al. Study on rock fragmentation mechanism of carbide spherical teeth based on impact load[J]. Drilling Engineering, 2022,49(1):142-152.

    Google Scholar

    [15] [15] 李鹏,殷琨,彭枧明,等.基于LS-DYNA的贯通式潜孔锤反循环钻头强度的优化分析[J].探矿工程(岩土钻掘工程),2015,42(3):44-47.

    Google Scholar

    LI Peng, YIN Kun, PENG Jianming, et al. Optimization analysis on strength of run-through DTH hammer reverse circulation bit based on LS-DYNA[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2015,42(3):44-47.

    Google Scholar

    [16] [16] 殷其雷.潜孔锤反循环钻探工艺试验研究[D].长春:吉林大学,2014.YIN Qilei. Research on the drilling technology of DTH hammer reverse circulation[D]. Changchun: Jilin University, 2014.

    Google Scholar

    [17] [17] 关晓琳,殷琨,朱丽红,等.贯通式潜孔锤反循环钻头的结构优化[J].探矿工程(岩土钻掘工程),2011,38(2):54-56.

    Google Scholar

    GUAN Xiaolin, YIN Kun, ZHU Lihong, et al. Structure optimization of DTH reverse circulation bit[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2011,38(2):54-56.

    Google Scholar

    [18] [18] 徐青,周磊,刘成涛,等.气动潜孔锤钻进技术在微型桩基施工中的应用[J].资源环境与工程,2018,32(S1):134-137.

    Google Scholar

    XU Qing, ZHOU Lei, LIU Chengtao, et al. Application of pneumatic DTH hammer drilling technology in micro pile foundation construction[J]. Resources Environment & Engineering, 2018,32(S1):134-137.

    Google Scholar

    [19] [19] 屠厚泽,高森.岩石破碎学[M].北京:地质出版社,1990.TU Houze, GAO Sen. Theory of Rock Fragmentation[M]. Beijing: Geological Publishing House, 1990.

    Google Scholar

    [20] [20] 裴玲玲.钻头自回转型气动潜孔锤的研究与设计[D].长春:吉林大学,2016.PEI Lingling. Study and design of pneumatic DTH hammer with self-propelled round bit[D]. Changchun: Jilin University, 2016.

    Google Scholar

    [21] [21] 楼日新.复杂地层潜孔锤跟管钻进技术研究[D].成都:成都理工大学,2007.LOU Rixin. Research on the technology of DTH hammer drilling with casing for complex stratum[D]. Chengdu: Chengdu University of Technology, 2007.

    Google Scholar

    [22] [22] 支跃.大孔径气举反循环潜孔锤动力学研究[D].大庆:东北石油大学,2014.ZHI Yue. The dynamics research of large size gas lift reverse circulation DTH hammer[D]. Daqing: Northeast Petroleum University, 2014.

    Google Scholar

    [23] [23] 曾辉.瞬态接触冲击的理论研究与潜孔锤钻柱系统建模分析[D].北京:中国地质大学(北京),2011.ZENG Hui. Study on the transient contact/impact theory and modeling analysis of the DTH drill string system[D]. Beijing: China University of Geosciences (Beijing), 2011.

    Google Scholar

    [24] [24] 孙训方,方孝淑,关来泰.材料力学(I)[M].北京:高等教育出版社,2009.SUN Xunfang, FANG Xiaoshu, GUAN Laitai. Mechanics of Materials(I)[M]. Beijing: Higher Education Press, 2009.

    Google Scholar

    [25] [25] 隋宪增,楚希亮,刘德义.XGQ25钢的断回形貌与力学性能[J].特殊钢,1994(4):33-36.

    Google Scholar

    SUI Xianzeng, CHU Xiliang, LIU Deyi. Fracture morphology and mechanical properties of steel XGQ25[J]. Special Steel, 1994(4):33-36.

    Google Scholar

    [26] [26] 成大先.机械设计手册[M].北京:化学工业出版社,2007.CHENG Daxian. Hand Book of Mechanical Design[M]. Beijing: Chemical Industry Press, 2007.

    Google Scholar

    [27] [27] 杜小军,蒋荣庆.大直径潜孔锤冲击能量传递模拟试验研究[J].探矿工程,1996(6):4-7.

    Google Scholar

    DU Xiaojun, JIANG Rongqing. Simulation experiment on percussive energy transfer of large diameter DTH hammer[J]. Exploration Engineering, 1996(6):4-7.

    Google Scholar

    [28] [28] 殷琨,王茂森,等.冲击回转钻进[M].北京:地质出版社,2010.YIN Kun, WANG Maosen, et al. Percussion and Rotary Drilling[M]. Beijing: Geological Publishing House, 2010.

    Google Scholar

    [29] [29] 王达,何远信,等.地质钻探手册[M].长沙:中南大学出版社,2014.WANG Da, HE Yuanxin, et al. Geological Drilling Handbook[M]. Changsha: Central South University Press, 2014.

    Google Scholar

    [30] [30] 刘鸿文.材料力学(I)[M].北京:高等教育出版社,2004.LIU Hongwen. Mechanics of Materials(I) [M]. Beijing: Higher Education Press, 2004.

    Google Scholar

    [31] [31] 张国均,王树利.机械设计中的安全系数与可靠性设计[J].机械,1990(4):24-30.

    Google Scholar

    ZHANG Guojun, WANG Shuli. Safety factor and reliability design in mechanical design[J]. Mechinery, 1990(4):24-30.

    Google Scholar

    [32] [32] 徐灏.安全系数与许用应力[M].北京:机械工业出版社,1981.XU Hao. Safety Factor and Allowable Stress[M]. Beijing: China Machine Press, 1981.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(263) PDF downloads(91) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint