Geological Publishing House, Institute of Exploration Technology, Chinese Academy of Geological SciencesHost
2021 Vol. 48, No. 10
Article Contents

GUO Xing, ZHANG Jianzhong, SUN Xiao, MA Zhongguo, MU Jingfu, ZHANG Ming and LIU Jiali, . 2021. Effect of fiber on fracturing of high conductivity fractures. DRILLING ENGINEERING, 48(10): 13-20. doi: 10.12143/j.ztgc.2021.10.002
Citation: GUO Xing, ZHANG Jianzhong, SUN Xiao, MA Zhongguo, MU Jingfu, ZHANG Ming and LIU Jiali, . 2021. Effect of fiber on fracturing of high conductivity fractures. DRILLING ENGINEERING, 48(10): 13-20. doi: 10.12143/j.ztgc.2021.10.002

Effect of fiber on fracturing of high conductivity fractures

  • Fiber is one of the key factors for successful fracturing of high conductivity fractures in oil and gas wells. In order to optimize the fracturing technology and operation parameters for high conductivity fractures, laboratory physical model experiment with fiber as the main influencing factor was carried out to analyze the influence of fiber on proppant placement and channel occupancy in high conductivity fractures. The experimental results show: Adding fiber can significantly improve the sand carrying capacity and efficiency of fracturing fluid. The higher the fiber concentration is, the closer the proppant is placed to the middle and front of the fracture, which promotes the formation of long fractures in the fracturing process. The larger the constant adding proportion of fiber, the larger the occupancy rate of the fracture channel. However, the non-constant addition proportion of fiber provides the highest channel occupancy in the wedge-shaped way. In fracturing, the wedge-shaped addition method with high fiber proportion is helpful to form high conductivity fractures; over large or over small displacement will lead to less channel occupancy; and under the experimental conditions, the optimal displacement is 5.0 m3/h. The channel occupancy increases first and then decreases along the fracture extension direction with the maximum value in the middle of the fracture, and the minimum value at the crack opening. The fiber proportion and pumping rate do not affect the distribution trend of channel occupancy in high conductivity cracks.
  • 加载中
  • [1] Medvedev A V, Kraemer C C, Pena A A, et a1. On the mechanisms of channel fracturing[C]. The 2013 SPE Hydraulic Fracturing Technology Conference. Woodlands, Texas, USA, 2013.

    Google Scholar

    [2] [2] 贾光亮,李晔旻,郑道明.大牛地气田纤维脉冲加砂压裂工艺技术研究及应用[J].复杂油气藏,2018,11(3):77-80.

    Google Scholar

    JIA Guangliang, LI Yemin, ZHENG Daoming. Research and application of fiber pulse sand fracturing technology in Daniudi Gasfield[J]. Complex Hydrocarbon Reservoirs, 2018,11(3):77-80.

    Google Scholar

    [3] [3] 钟森,任山,黄禹忠,等.高速通道压裂技术在国外的研究与应用[J].中外能源,2012,17(6):39-42.

    Google Scholar

    ZHONG Sen, REN Shan, HUANG Yuzhong, et al. Research and application of channel fracturing technique in foreign oil and gas field[J]. Sino-Global Energy, 2012,17(6):39-42.

    Google Scholar

    [4] [4] 牛宝荣.提高裂缝导流能力的新方法[J].国外油田工程,2001,17(3):1-5.

    Google Scholar

    NIU Baorong. A new method to improve fracture conductivity[J]. Foreign Oilfield Engineering, 2001,17(3):1-5.

    Google Scholar

    [5] [5] 黄禹忠,任山,兰芳,等.纤维网络加砂压裂工艺的先导性试验[J].钻采工艺,2008,31(1):77-78,89.

    Google Scholar

    HUANG Yuzhong, REN Shan, LAN Fang, et al. Pilot test of fiber-laden fracturing technology[J]. Drilling & Production Technology, 2008,31(1):77-78,89.

    Google Scholar

    [6] [6] 温庆志,张士诚,王秀宇,等.支撑裂缝长期导流能力数值计算[J].石油钻采工艺,2005,27(4):68-70.

    Google Scholar

    WEN Qingzhi, ZHANG Shicheng, WANG Xiuyu, et al. Numerical calculation of long-term conductivity of propping fractures[J]. Oil Drilling & Production Technology, 2005,27(4):68-70.

    Google Scholar

    [7] [7] 严侠,黄朝琴,辛艳萍,等.高速通道压裂裂缝的高导流能力分析及其影响因素研究[J].物理学报,2015,64(13):259-269.

    Google Scholar

    YAN Xia, HUANG Zhaoqin, XIN Yanping, et al. Theoretical analysis of high flow conductivity of a fracture induced in HiWay fracturing[J]. Acta Physica Sinica, 2015,64(13):259-269.

    Google Scholar

    [8] [8] Gomaa A M, Hudson H, Nelson S, et al. Baker hughes hydraulic fracturing treatment design considerations for effective proppant pillar construction[C]. The SPE Annual Technical Conference and Exhibition. Dubai UAE , 2016:26-28.

    Google Scholar

    [9] [9] 钱斌,尹丛彬,朱炬辉,等.高效脉冲式加砂压裂技术研究与实践[J].天然气工业,2015,35(5):39-45.

    Google Scholar

    QIAN Bin, YIN Congbin, ZHU Juhui, et al. Research and practice of the impulse sand fracturing technology[J]. Natural Gas Industry, 2015,35(5):39-45.

    Google Scholar

    [10] [10] 贾光亮,吴天乾,李晔旻,等.临兴低压浅层气压裂改造技术研究与应用[J].非常规油气,2020,7(3):101-107.

    Google Scholar

    JIA Guangliang, WU Tianqian, LI Yemin, et al. Fracturing technology research and application of Linxing shallow layer gas in low pressure area[J]. Unconventional Oil & Gas, 2020,7(3):101-107.

    Google Scholar

    [11] [11] 王志刚,李小洋,张永彬,等.海域非成岩天然气水合物储层改造方法分析[J].钻探工程,2021,48(6):32-38.

    Google Scholar

    WANG Zhigang, LI Xiaoyang, ZHANG Yongbin, et al. Analysis of the stimulation methods for marine non-diagenetic natural gas hydrate reservoirs[J]. Drilling Engineering, 2021,48(6):32-38.

    Google Scholar

    [12] [12] 周忠全,张星斗.脉冲式纤维加砂压裂工艺应用及效果分析[J].化工管理,2018(9):190-191.

    Google Scholar

    ZHOU Zhongquan, ZHANG Xingdou. Application and effect analysis of pulse fiber sand fracturing technology[J]. Chemical Enterprise Management, 2018(9): 190-191.

    Google Scholar

    [13] [13] 郭小哲,刘慧,艾贝贝,等.致密气储层直井分层压裂裂缝规模合理性评价[J].非常规油气,2019(1):89-93.

    Google Scholar

    GUO Xiaozhe, LIU Hui, AI Beibei, et al. Rationality evaluation of fracture scale for vertical well separated fracturing in tight gas reservoir[J]. Unconventional Oil & Gas, 2019(1):89-93.

    Google Scholar

    [14] [14] 刘向军.高速通道压裂工艺在低渗透油藏的应用[J]. 油气地质与采收率,2015,22(2):122-126.

    Google Scholar

    LIU Xiangjun. Application of Hiway technology in the low permeability reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2015,22(2):122-126.

    Google Scholar

    [15] [15] 米强波.碳酸盐岩低应力差储层控缝高机理及工艺研究[D].成都:成都理工大学,2017.MI Qiangbo. Mechanism and technology of fracture height control in low stress reservoir of carbonate rocks[D]. Chengdu: Chengdu University of Technology, 2017.

    Google Scholar

    [16] [16] 吴顺林,李宪文,张矿生,等.一种实现裂缝高导流能力的脉冲加砂压裂新方法[J].断块油气田,2014,21(1):110-113.

    Google Scholar

    WU Shunlin, LI Xianwen, ZHANG Kuangsheng, et al. A new method of pulse sand fracturing to achieve high conductivity of fracture[J]. Fault-Block Oil & Gas Field, 2014,21(1):110-113.

    Google Scholar

    [17] [17] 付倩倩.纤维复合防砂技术在草104区块的应用[J].非常规油气,2020(4):106-111.

    Google Scholar

    FU Qianqian. Application of fiber composite sand control in Block104[J]. Unconventional Oil & Gas, 2020 (4):106-111.

    Google Scholar

    [18] [18] 苏国辉,高伟,李达,等.致密砂岩气藏脉冲纤维加砂压裂工艺参数优化[J].钻采工艺,2018,41(1):46-48.

    Google Scholar

    SU Guohui, GAO Wei, LI Da, et al. Parameter optimization of pulse fiber sand fracturing in tight sandstone gas reservoir[J]. Drilling & Production Technology, 2018,41(1):46-48.

    Google Scholar

    [19] [19] 温庆志,高金剑,黄波,等.通道压裂砂堤分布规律研究[J].特种油气藏,2014,21(4):89-92.

    Google Scholar

    WEN Qingzhi, GAO Jinjian, HUANG Bo, et al. Research on distribution pattern of sand bank for channel fracturing[J]. Special Oil & Gas Reservoirs, 2014,21(4):89-92.

    Google Scholar

    [20] [20] 郭兴,孙晓,张建忠,等.延长气田W区域本溪组砂堵分析[J].非常规油气,2020(4):97-105.

    Google Scholar

    GUO Xing, SUN Xiao, ZHANG Jianzhong, et al. Analysis on sand plugging of gas well fracturing in benxi formation of W area in Yanchang Gas Field[J]. Unconventional Oil & Gas, 2020(4):97-105.

    Google Scholar

    [21] [21] 杨雪,袁旭,何小东,等.酸液溶蚀作用对支撑剂性能的影响[J].断块油气田,2021,28(1):68-71.

    Google Scholar

    YANG Xue, YUAN Xu, HE Xiaodong, et al. The effect of acid corrosion on proppant properties[J]. Fault-Block Oil and Gas Field, 2021, 8(1):68-71.

    Google Scholar

    [22] [22] 王礼祥.斯托克斯定律[J].物理通报,1991(3):5-6.

    Google Scholar

    WANG Lixiang. Stokes law[J]. Physics Bulletin, 1991(3):5-6.

    Google Scholar

    [23] [23] Till F M. Revision of Kynch sedimentation theory[J]. American Institute of Chemical Engineers Journal, 1981,27(5):823-829.

    Google Scholar

    [24] [24] 刘玉婷,管保山,刘萍,等.纤维对压裂液携砂能力的影响[J].油田化学,2012,29(1):75-79.

    Google Scholar

    LIU Yuting, GUAN Baoshan, LIU Ping, et al. Effects of fiber on the proppant carrying capacity of fracturing fluid[J]. Oilfield Chemistry, 2012,29(1):75-79.

    Google Scholar

    [25] [25] 张涛,曾先进,郭建春,等. 纤维支撑剂团静态沉降速度计算方法[J].油气地质与采收率,2021,28(1):144-150.

    Google Scholar

    ZHANG Tao, ZENG Xianjin, GUO Jianchun, et al. Calculation model of static settling velocity of fiber-containing proppant clumps[J]. Petroleum Geology and Recovery Efficiency, 2021,28(1):144-150.

    Google Scholar

    [26] [26] 温庆志,徐希,王杏尊,等.低渗透疏松砂岩纤维压裂技术[J].特种油气藏,2014,21(2):131-134.

    Google Scholar

    WEN Qingzhi, XU Xi, WANG Xingzun, et al. Fiber fracturing technology for low permeability unconsolidated sandstone[J]. Special Oil & Gas Reservoirs, 2014,21(2):131-134.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(582) PDF downloads(98) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint