[1]
|
Medvedev A V, Kraemer C C, Pena A A, et a1. On the mechanisms of channel fracturing[C]. The 2013 SPE Hydraulic Fracturing Technology Conference. Woodlands, Texas, USA, 2013.
Google Scholar
|
[2] |
[2] 贾光亮,李晔旻,郑道明.大牛地气田纤维脉冲加砂压裂工艺技术研究及应用[J].复杂油气藏,2018,11(3):77-80.
Google Scholar
JIA Guangliang, LI Yemin, ZHENG Daoming. Research and application of fiber pulse sand fracturing technology in Daniudi Gasfield[J]. Complex Hydrocarbon Reservoirs, 2018,11(3):77-80.
Google Scholar
|
[3] |
[3] 钟森,任山,黄禹忠,等.高速通道压裂技术在国外的研究与应用[J].中外能源,2012,17(6):39-42.
Google Scholar
ZHONG Sen, REN Shan, HUANG Yuzhong, et al. Research and application of channel fracturing technique in foreign oil and gas field[J]. Sino-Global Energy, 2012,17(6):39-42.
Google Scholar
|
[4] |
[4] 牛宝荣.提高裂缝导流能力的新方法[J].国外油田工程,2001,17(3):1-5.
Google Scholar
NIU Baorong. A new method to improve fracture conductivity[J]. Foreign Oilfield Engineering, 2001,17(3):1-5.
Google Scholar
|
[5] |
[5] 黄禹忠,任山,兰芳,等.纤维网络加砂压裂工艺的先导性试验[J].钻采工艺,2008,31(1):77-78,89.
Google Scholar
HUANG Yuzhong, REN Shan, LAN Fang, et al. Pilot test of fiber-laden fracturing technology[J]. Drilling & Production Technology, 2008,31(1):77-78,89.
Google Scholar
|
[6] |
[6] 温庆志,张士诚,王秀宇,等.支撑裂缝长期导流能力数值计算[J].石油钻采工艺,2005,27(4):68-70.
Google Scholar
WEN Qingzhi, ZHANG Shicheng, WANG Xiuyu, et al. Numerical calculation of long-term conductivity of propping fractures[J]. Oil Drilling & Production Technology, 2005,27(4):68-70.
Google Scholar
|
[7] |
[7] 严侠,黄朝琴,辛艳萍,等.高速通道压裂裂缝的高导流能力分析及其影响因素研究[J].物理学报,2015,64(13):259-269.
Google Scholar
YAN Xia, HUANG Zhaoqin, XIN Yanping, et al. Theoretical analysis of high flow conductivity of a fracture induced in HiWay fracturing[J]. Acta Physica Sinica, 2015,64(13):259-269.
Google Scholar
|
[8] |
[8] Gomaa A M, Hudson H, Nelson S, et al. Baker hughes hydraulic fracturing treatment design considerations for effective proppant pillar construction[C]. The SPE Annual Technical Conference and Exhibition. Dubai UAE , 2016:26-28.
Google Scholar
|
[9] |
[9] 钱斌,尹丛彬,朱炬辉,等.高效脉冲式加砂压裂技术研究与实践[J].天然气工业,2015,35(5):39-45.
Google Scholar
QIAN Bin, YIN Congbin, ZHU Juhui, et al. Research and practice of the impulse sand fracturing technology[J]. Natural Gas Industry, 2015,35(5):39-45.
Google Scholar
|
[10] |
[10] 贾光亮,吴天乾,李晔旻,等.临兴低压浅层气压裂改造技术研究与应用[J].非常规油气,2020,7(3):101-107.
Google Scholar
JIA Guangliang, WU Tianqian, LI Yemin, et al. Fracturing technology research and application of Linxing shallow layer gas in low pressure area[J]. Unconventional Oil & Gas, 2020,7(3):101-107.
Google Scholar
|
[11] |
[11] 王志刚,李小洋,张永彬,等.海域非成岩天然气水合物储层改造方法分析[J].钻探工程,2021,48(6):32-38.
Google Scholar
WANG Zhigang, LI Xiaoyang, ZHANG Yongbin, et al. Analysis of the stimulation methods for marine non-diagenetic natural gas hydrate reservoirs[J]. Drilling Engineering, 2021,48(6):32-38.
Google Scholar
|
[12] |
[12] 周忠全,张星斗.脉冲式纤维加砂压裂工艺应用及效果分析[J].化工管理,2018(9):190-191.
Google Scholar
ZHOU Zhongquan, ZHANG Xingdou. Application and effect analysis of pulse fiber sand fracturing technology[J]. Chemical Enterprise Management, 2018(9): 190-191.
Google Scholar
|
[13] |
[13] 郭小哲,刘慧,艾贝贝,等.致密气储层直井分层压裂裂缝规模合理性评价[J].非常规油气,2019(1):89-93.
Google Scholar
GUO Xiaozhe, LIU Hui, AI Beibei, et al. Rationality evaluation of fracture scale for vertical well separated fracturing in tight gas reservoir[J]. Unconventional Oil & Gas, 2019(1):89-93.
Google Scholar
|
[14] |
[14] 刘向军.高速通道压裂工艺在低渗透油藏的应用[J]. 油气地质与采收率,2015,22(2):122-126.
Google Scholar
LIU Xiangjun. Application of Hiway technology in the low permeability reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2015,22(2):122-126.
Google Scholar
|
[15] |
[15] 米强波.碳酸盐岩低应力差储层控缝高机理及工艺研究[D].成都:成都理工大学,2017.MI Qiangbo. Mechanism and technology of fracture height control in low stress reservoir of carbonate rocks[D]. Chengdu: Chengdu University of Technology, 2017.
Google Scholar
|
[16] |
[16] 吴顺林,李宪文,张矿生,等.一种实现裂缝高导流能力的脉冲加砂压裂新方法[J].断块油气田,2014,21(1):110-113.
Google Scholar
WU Shunlin, LI Xianwen, ZHANG Kuangsheng, et al. A new method of pulse sand fracturing to achieve high conductivity of fracture[J]. Fault-Block Oil & Gas Field, 2014,21(1):110-113.
Google Scholar
|
[17] |
[17] 付倩倩.纤维复合防砂技术在草104区块的应用[J].非常规油气,2020(4):106-111.
Google Scholar
FU Qianqian. Application of fiber composite sand control in Block104[J]. Unconventional Oil & Gas, 2020 (4):106-111.
Google Scholar
|
[18] |
[18] 苏国辉,高伟,李达,等.致密砂岩气藏脉冲纤维加砂压裂工艺参数优化[J].钻采工艺,2018,41(1):46-48.
Google Scholar
SU Guohui, GAO Wei, LI Da, et al. Parameter optimization of pulse fiber sand fracturing in tight sandstone gas reservoir[J]. Drilling & Production Technology, 2018,41(1):46-48.
Google Scholar
|
[19] |
[19] 温庆志,高金剑,黄波,等.通道压裂砂堤分布规律研究[J].特种油气藏,2014,21(4):89-92.
Google Scholar
WEN Qingzhi, GAO Jinjian, HUANG Bo, et al. Research on distribution pattern of sand bank for channel fracturing[J]. Special Oil & Gas Reservoirs, 2014,21(4):89-92.
Google Scholar
|
[20] |
[20] 郭兴,孙晓,张建忠,等.延长气田W区域本溪组砂堵分析[J].非常规油气,2020(4):97-105.
Google Scholar
GUO Xing, SUN Xiao, ZHANG Jianzhong, et al. Analysis on sand plugging of gas well fracturing in benxi formation of W area in Yanchang Gas Field[J]. Unconventional Oil & Gas, 2020(4):97-105.
Google Scholar
|
[21] |
[21] 杨雪,袁旭,何小东,等.酸液溶蚀作用对支撑剂性能的影响[J].断块油气田,2021,28(1):68-71.
Google Scholar
YANG Xue, YUAN Xu, HE Xiaodong, et al. The effect of acid corrosion on proppant properties[J]. Fault-Block Oil and Gas Field, 2021, 8(1):68-71.
Google Scholar
|
[22] |
[22] 王礼祥.斯托克斯定律[J].物理通报,1991(3):5-6.
Google Scholar
WANG Lixiang. Stokes law[J]. Physics Bulletin, 1991(3):5-6.
Google Scholar
|
[23] |
[23] Till F M. Revision of Kynch sedimentation theory[J]. American Institute of Chemical Engineers Journal, 1981,27(5):823-829.
Google Scholar
|
[24] |
[24] 刘玉婷,管保山,刘萍,等.纤维对压裂液携砂能力的影响[J].油田化学,2012,29(1):75-79.
Google Scholar
LIU Yuting, GUAN Baoshan, LIU Ping, et al. Effects of fiber on the proppant carrying capacity of fracturing fluid[J]. Oilfield Chemistry, 2012,29(1):75-79.
Google Scholar
|
[25] |
[25] 张涛,曾先进,郭建春,等. 纤维支撑剂团静态沉降速度计算方法[J].油气地质与采收率,2021,28(1):144-150.
Google Scholar
ZHANG Tao, ZENG Xianjin, GUO Jianchun, et al. Calculation model of static settling velocity of fiber-containing proppant clumps[J]. Petroleum Geology and Recovery Efficiency, 2021,28(1):144-150.
Google Scholar
|
[26] |
[26] 温庆志,徐希,王杏尊,等.低渗透疏松砂岩纤维压裂技术[J].特种油气藏,2014,21(2):131-134.
Google Scholar
WEN Qingzhi, XU Xi, WANG Xingzun, et al. Fiber fracturing technology for low permeability unconsolidated sandstone[J]. Special Oil & Gas Reservoirs, 2014,21(2):131-134.
Google Scholar
|