Citation: | YU Dandan, XU Chenghua, LUO Zujiang, GU Wen, ZHOU Lingling. 2023. Origin and genesis model of the Tangquan geothermal water in Nanjing. Geological Bulletin of China, 42(11): 2006-2013. doi: 10.12097/j.issn.1671-2552.2023.11.016 |
Nanjing Tangquan is rich in geothermal water.It is of great significance for the sustainable use of geothermal water to reveal its supply source and genesis mechanism.The method of hydrochemistry and isotope geochemistry was taken to make the systematic study.The chemical composition of geothermal water is different from that of shallow cold water.The thermal reservoir temperature has been estimated to be 63~75℃, with a water circulation depth of 1.8~2.3 km.The geothermal fluid origins from the rainfall, and the altitude of recharge area is 321~539 m.The water age is 2046~6474 a, with shallow karst cold water mixed while upwelling, and the mixing ratio is 4%~26%.Based on these analysis, a genesis model of the study area has been postulated to be a low-medium temperature geothermal system of a convective type.It receives the precipitation from the karst outcropping area in Laoshan complex anticline, and it is gradually heated by the normal heat flow during circulating.The thermal reservoir is originally the Upper Sinian series dolomite.The cap rocks are mainly Cambrian, Cretaceous and Quaternary strata.The geothermal water flows upward in the intersection zones of the NEE- and NW-striking faults along deep circulation, and mixing with cold water in shallow, forming the geothermal anomalies.
[1] | Ahmad M, Akram W, Hussain S D, et al. Origin and subsurface history of geothermal water of Murtazabad area, Pakistan: an isotopic evidence[J]. Applied Radiation and Isotopes, 2001, 55: 731-736. doi: 10.1016/S0969-8043(01)00119-1 |
[2] | Bakari S S, Aagaard P, Vogt R D, et al. Strontium isotopes as tracers for quantifying mixing of groundwater in the alluvial plain of a coastal watershed, south-eastern Tanzania[J]. J Geochem Explor., 2013: 130: 1-14. doi: 10.1016/j.gexplo.2013.02.008 |
[3] | Clark I D, Fritz P. Environmental isotopes in hydrogeology[M]. CRC, Boca Raton, FL, 1997: 1-328. |
[4] | Fournier R O, Trues dell A H. An empirical Na-K-Ca geothermometer for natural waters[J]. Geochimica et Cosmochimica Acta, 1973, 37(5): 1255-1275. doi: 10.1016/0016-7037(73)90060-4 |
[5] | Fournier R. Chemical geothermometers and mixing models for geothermal systems[J]. Geothermics, 1977, 5(1): 41-50. |
[6] | Faure G. Principles of isotope geology[C]//Wiley, Chichester, UK Négrel P, Petelet-Giraud E, Widory D. Strontium isotope geochemistry of alluvial groundwater: a tracer for groundwater resources characterization. Hydrol. Earth Syst. Sci. 2004, 8(5): 959-972. |
[7] | Giggenbach W, Gonfiantini R, Jangi B, et al. Isotopic and chemical composition of Parbati valley geothermal discharges, north-west Himalaya, India[J]. Geothermics, 1983, 12(2): 199-222. |
[8] | Giggenbach W F. Geothermal solute equilibria. derivation of Na-K-Mg-Ca geoindicators[J]. Geochimica et Cosmochimica Acta, 1988, 52(12): 2749-2765. doi: 10.1016/0016-7037(88)90143-3 |
[9] | Guo Q, Pang Z, Wang Y, Tian J. Fluid geochemistry and geothermometry applications of the Kangding high-temperature geothermal system in eastern Himalayas[J]. Appl Geochem., 2017, 81: 63-75. https://doi.org/10.1016/j.apgeochem.2017.03.007. doi: 10.1016/j.apgeochem.2017.03.007 |
[10] | Lu L H, Pang Z H, Kong Y L, et al. Geochemical and isotopic evidence on the recharge and circulation of geothermal water in the Tangshan Geothermal System near Nanjing, China: implications for sustainable development[J]. Hydrogeology Journal, 2018, 26(5): 1705-1719. doi: 10.1007/s10040-018-1721-6 |
[11] | 黄思静, 刘树根, 李国蓉, 等. 奥陶系海相碳酸盐锶同位素组成及受成岩流体的影响[J]. 成都理工大学学报(自然科学版), 2004, 31(1): 1-7. |
[12] | 江苏地调局地调所. 全椒县幅、江浦县幅区域地质调查报告[R]. 1993. |
[13] | 江苏省地质工程勘察院. 南京汤泉地热资源调查评价报告[R]. 2009. |
[14] | 姜光政, 高堋, 饶松, 等. 中国大陆地区大地热流数据汇编(第四版)[J]. 地球物理学报, 2016, 59(8): 2892-2910. |
[15] | 柯柏林, 林天懿, 李文, 等. 北京西山谷积山背斜地热系统成因模式及远景区预测[J]. 地质通报, 2019, 38(8): 1378-1385. |
[16] | 庞忠和, 王全九, 宋献方. 同位素水文学[M]. 北京: 科学出版社, 2011: 162-177. |
[17] | 汪集旸, 熊亮萍, 庞忠和. 中低温对流型地热系统[M]. 北京: 科学出版社, 1993: 117-132. |
[18] | 汪洋, 汪集旸, 邓晋福, 等. 中国大陆地壳和岩石圈铀、钍、钾丰度的大地热流约束[J]. 地球物理学进展, 2001, 16(3): 21-30. |
[19] | 汪洋, 张旭虎, 蒲丛林等. 河北廊坊南部地区地热水化学特征及成因机制[J]. 地质通报, 2022, 41(9): 1698-1706. |
[20] | 杨峰田, 庞忠和, 王彩会, 等. 苏北盆地老子山地热田成因模式[J]. 吉林大学学报(地球科学版), 2012, 42(2): 468-475. |
[21] | 闫佰忠, 肖长来, 梁秀娟, 等. 长白山玄武岩区盆地型地热水特征及成因模式[J]. 地质论评, 2018, 64(5): 1201-1216. |
[22] | 于津生, 虞福基, 刘德平. 中国东部大气降水氢、氧同位素组成[J]. 地球化学, 1987, 3(1): 22-26. |
[23] | 赵剑畏, 许家法, 王光亚. 江苏地温水温场特征及地热异常分布规律与控制条件探讨[J]. 江苏地质, 1997, 21(1): 21-35. |
[24] | 张卫民. 水文地球化学方法在赣南横径地区地热水成因分析中的应用[J]. 水文地质工程地质, 2001, 28(4): 45-48. |
[25] | 张萌, 蔺文静, 刘昭, 等. 西藏谷露高温地热系统水文地球化学特征及成因模式[J]. 成都理工大学学报(自然科学版), 2014, 41(3): 382-392. |
[26] | 张朝锋, 郭文, 王晓鹏. 中国地热资源类型和特征探讨[J]. 地下水, 2018, 40(4): 1-5. |
Locations of the structure and sampling point
The geologic sketch map of bedrocks in the study area
Piper diagram of different water samples from Tangquan
Na-K-Mg triangular diagram for ground water
δ18O-δD plot of water samples from Tangquan
The relation plot of 14C-δ13C for geothermal groundwater
The genetic model of Tangquan geothermal system