2023 Vol. 42, No. 10
Article Contents

YUAN Hao, GUO Changbao, WU Ruian, YAN Yiqiu, YANG Zhihua. 2023. Research progress and prospects of the giant Yigong long run-out landslide, Tibetan Plateau, China. Geological Bulletin of China, 42(10): 1757-1773. doi: 10.12097/j.issn.1671-2552.2023.10.012
Citation: YUAN Hao, GUO Changbao, WU Ruian, YAN Yiqiu, YANG Zhihua. 2023. Research progress and prospects of the giant Yigong long run-out landslide, Tibetan Plateau, China. Geological Bulletin of China, 42(10): 1757-1773. doi: 10.12097/j.issn.1671-2552.2023.10.012

Research progress and prospects of the giant Yigong long run-out landslide, Tibetan Plateau, China

More Information
  • Long run-out landslide is a landslide with high shear outlet, long sliding distance, large volume and high speed, which is characterized by strong kinetic energy, strong fragmentation-fluidization and entrainment effect.The landslide itself and its induced hazard chain are great harm to human life and property safety, road and bridge infrastructure and water conservancy and hydropower projects.Based on remote sensing interpretation and field investigation, this paper summarizes the research progress of the giant Yigong long run-out landslide in Xizang in 2000.It also delves into the initiation mechanism, landslide volume, movement speed, dammed lake volume and dam failure mechanism of Yigong landslide.Furthermore, it reveals that internal and external dynamic coupling is the main influencing factor of the Yigong landslide and considers that the landslide has periodic sliding mechanism of retrogressive erosion recurrence type.In additon, this paper calculates the landslide volume based on GIS and high-precision DEM and reveals that the landslide volume in the landslide source zone is about 9225×104 m3.The landslide accumulation volume is about 2.81×108~3.06×108 m3, which is close to the domestic and international research.There are two potential instability rockmass in the landslide source zone of Yigong landslide, with a total volume of about 1.86×108 m3.Once the two potential instability rockmass are unstable, the hazard chain of landslide-river blockage-dam break might be formed again and cause great harm.This study concludes by proposing research directions to further research the stability of the potential landslide of the Yigong landslide, predict the basin influence range of the hazard chain, establish the monitoring and early warning system.These suggestions have important guiding significance for the construction of major projects such as railway and hydropower projects being planned and constructed in this area, as well as for urban hazard prevention and mitigation.

  • 加载中
  • [1] Clague J J, Evans S G. Canadian geographer/Le Géographe Canadian[J]. Rock Avalanches, 1987, 31(3): 278-282.

    Google Scholar

    [2] Dai Z L, Xu K, Wang F W, et al. Numerical investigation on the kinetic characteristics of theYigong debris flow in Tibet, China[J]. Water, 2021, 13(8): 1076. doi: 10.3390/w13081076

    CrossRef Google Scholar

    [3] Delaney K B, Evans S G. The 2000 Yigong landslide(Tibetan Plateau), rockslide-dammed lake and outburst flood: Review, remote sensing analysis, and process modelling[J]. Geomorphology, 2015, 246: 377-393. doi: 10.1016/j.geomorph.2015.06.020

    CrossRef Google Scholar

    [4] Ekstrom G, Stark C P. Simple scaling of catastrophic landslide dynamics[J]. Science, 2013, 339(6126): 1416-1419. doi: 10.1126/science.1232887

    CrossRef Google Scholar

    [5] Evans S G, Delaney K B. Characterization of the 2000 Yigong Zangbo River(Tibet) landslide dam and impoundment by remote sensing, natural and artificial rockslide dams[J]. Geomorphology, 2011, 133: 543-559.

    Google Scholar

    [6] Fan J R, Zhang X Y, Su F H, et al. Geometrical feature analysis and disaster assessment of theXinmo landslide based on remote sensing data[J]. Journal of Mountain Science, 2017, 14(9): 1677-1688. doi: 10.1007/s11629-017-4633-3

    CrossRef Google Scholar

    [7] Guo C B, Montgomery D R, Zhang Y S, et al. Evidence for repeated failure of the giantYigong landslide on the edge of the Tibetan Plateau[J]. Scientific reports, 2020, 10(1): 14317. doi: 10.1038/s41598-020-71330-1

    CrossRef Google Scholar

    [8] Hao Z C, Ju Q, Jiang W J, et al. Characteristics and Scenarios Projection of Climate Change on the Tibetan Plateau[J]. The Scientific World Journal, 2013: 129793.

    Google Scholar

    [9] International Union of Geological Sciences Working Group on Landslides. A suggested method for describing the rate of movement of a landslide[J]. Bulletin of the International Association of Engineering Geology, 1995, 52(1): 75-78. doi: 10.1007/BF02602683

    CrossRef Google Scholar

    [10] Kojan E, Hutchinson J N. Mayunmarca Rockslide and Debris Flow, Peru-ScienceDirect[J]. Developments in Geotechnical Engineering, 1978, 14: 315-353.

    Google Scholar

    [11] Liu W, He S M. Dynamic simulation of a mountain disaster chain: landslides, barrier lakes, and outburst floods[J]. Natural Hazards, 2018, 90(5): 1-19.

    Google Scholar

    [12] Mcguire B. Potential for a hazardous geospheric response to projected future climate changes[J]. Philos Trans A Math Phys Eng., 2010, 368(1919): 2317-2345.

    Google Scholar

    [13] Shang Y J, Yang Z F, Li L H, et al. A super-large landslide in Tibet in 2000: background, occurrence, disaster, and origin[J]. Geomorphology, 2003, 54: 225-243. doi: 10.1016/S0169-555X(02)00358-6

    CrossRef Google Scholar

    [14] Turzewski M D, Huntington K W, Leveque R J. The geomorphic impact of outburst floods: integrating observations and numerical simulations of the 2000 Yigong Flood, Eastern Himalaya[J]. Journal of Geophysical Research: Earth Surface, 2019, 124(5): 1056-1079. doi: 10.1029/2018JF004778

    CrossRef Google Scholar

    [15] Wang Z H, Lv J T. Satellite monitoring of the Yigong landslide in Tibet, China[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2002, 4814: 34-38.

    Google Scholar

    [16] Wang Z H. A thunder at the beginning of the 21st century-The giantYigong Landslide[C]//The Tenth International Symposium on Landslides and Engineered Slopes, 2008: 1068-1075.

    Google Scholar

    [17] Wen B P, Wang S J, Wang E Z, et al. Characteristics of rapid giant landslides in China[J]. Landslides, 2004, 1(4): 247-261. doi: 10.1007/s10346-004-0022-4

    CrossRef Google Scholar

    [18] Xu Q, Shang Y J, Asch T V, et al. Observations from the large, rapidYigong rock slide-debris avalanche, southeast Tibet[J]. NRC Research Press, 2012, 49(5): 589-606.

    Google Scholar

    [19] Yin Y P, Xing A G. Aerodynamic modeling of theYigong gigantic rock slide-debris avalanche, Tibet, China[J]. Bulletin of Engineering Geology and the Environment, 2012, 71(1): 149-160. doi: 10.1007/s10064-011-0348-9

    CrossRef Google Scholar

    [20] Zhang M, Yin Y P. Dynamics, mobility-controlling factors and transport mechanisms of rapid long-runout rock avalanches in China[J]. Engineering Geology, 2013, 167(12): 37-58.

    Google Scholar

    [21] Zhou C H, Yue Z Q, Lee C F, et al. Satellite image analysis of a huge landslide at Yi Gong, Tibet, China[J]. Quarterly Journal of Engineering Geology & Hydrogeology, 2001, 34(4): 325-332.

    Google Scholar

    [22] Zhou G G D, Roque P J C, Xie Y X, et al. Numerical study on the evolution process of a geohazards chain resulting from the Yigong landslide[J]. Landslides, 2020, 17: 2563-2576. doi: 10.1007/s10346-020-01448-w

    CrossRef Google Scholar

    [23] Zhou J W, Cui P, Hao M H. Comprehensive analyses of the initiation and entrainment processes of the 2000Yigong catastrophic landslide in Tibet, China[J]. Landslides, 2016, 13(1): 39-54. doi: 10.1007/s10346-014-0553-2

    CrossRef Google Scholar

    [24] Zhuang Y, Yin Y P, Xing A G, et al. Combined numerical investigation of theYigong rock slide-debris avalanche and subsequent dam-break flood propagation in Tibet, China[J]. Landslides, 2020, 17(9): 2217-2229. doi: 10.1007/s10346-020-01449-9

    CrossRef Google Scholar

    [25] Zhuang Y, Xang A G, Leng Y Y, et al. Investigation of characteristics of long runout landslides based on the multi-source data collaboration: a case study of the Shuicheng basalt landslide in Guizhou, China[J]. Rock Mechanics and Rock Engineering, 2021, 54: 3783-3798. doi: 10.1007/s00603-021-02493-0

    CrossRef Google Scholar

    [26] 柴贺军, 王士天, 许强, 等. 西藏易贡滑坡物质运动全过程数值模拟研究[J]. 地质灾害与环境保护, 2001, 12(2): 1-3+82. doi: 10.3969/j.issn.1006-4362.2001.02.001

    CrossRef Google Scholar

    [27] 程谦恭, 张倬元, 黄润秋. 高速远程崩滑动力学的研究现状及发展趋势[J]. 山地学报, 2007, 25(1): 72-84.

    Google Scholar

    [28] 陈锣增. 易贡高速远程滑坡运动颗粒流数值分析[D]. 西南交通大学硕士学位论文, 2016.

    Google Scholar

    [29] 崔鹏, 陈容, 向灵芝, 等. 气候变暖背景下青藏高原山地灾害及其风险分析[J]. 气候变化研究进展, 2014, 10(2): 103-109.

    Google Scholar

    [30] 戴兴建, 殷跃平, 邢爱国. 易贡滑坡-碎屑流-堰塞坝溃坝链生灾害全过程模拟与动态特征分析[J]. 中国地质灾害与防治学报, 2019, 30(5): 1-8.

    Google Scholar

    [31] 高浩源, 高杨, 贺凯, 等. 贵州水城"7.23"高位远程滑坡冲击铲刮效应分析[J]. 中国岩溶, 2020, 39(4): 535-546.

    Google Scholar

    [32] 高杨, 李滨, 高浩源, 等. 高位远程滑坡冲击铲刮效应研究进展及问题[J]. 地质力学学报, 2020, 26(4): 510-519.

    Google Scholar

    [33] 郭长宝, 杜宇本, 张永双, 等. 川西鲜水河断裂带地质灾害发育特征与典型滑坡形成机理[J]. 地质通报, 2015, 34(1): 121-134. doi: 10.3969/j.issn.1671-2552.2015.01.010

    CrossRef Google Scholar

    [34] 郭广猛. 对西藏易贡特大滑坡的新认识[J]. 地学前缘, 2005, 12(2): 276-276.

    Google Scholar

    [35] 何思明, 白秀强, 欧阳朝军, 等. 四川省茂县叠溪镇新磨村特大滑坡应急科学调查[J]. 山地学报, 2017, 35(4): 598-603.

    Google Scholar

    [36] 黄润秋. 中国西部地区典型岩质滑坡机理研究[J]. 地球科学进展, 2004, 19(3): 443-450.

    Google Scholar

    [37] 黄细超, 余天彬, 王猛, 等. 金沙江结合带高位远程滑坡灾害链式特征遥感动态分析[J]. 中国地质灾害与防治学报, 2021, 32(5): 40-51.

    Google Scholar

    [38] 李潮流, 康世昌. 青藏高原不同时段气候变化的研究综述[J]. 地理学报, 2006, 61(3): 327-335. doi: 10.3321/j.issn:0375-5444.2006.03.012

    CrossRef Google Scholar

    [39] 李菲, 郜永祺, 万欣, 等. 全球变暖与地球"三极"气候变化[J]. 大气科学学报, 2021, 44(1): 1-11.

    Google Scholar

    [40] 李华, 史文兵, 朱要强, 等. 贵州省水城县"7·23"灾难性滑坡形成机制研究[J]. 自然灾害学报, 2020, 29(6): 188-198.

    Google Scholar

    [41] 李俊, 陈宁生, 欧阳朝军, 等. 扎木弄沟滑坡型泥石流物源及堵河溃坝可能性分析[J]. 灾害学, 2017, 32(1): 80-84, 116. doi: 10.3969/j.issn.1000-811X.2017.01.014

    CrossRef Google Scholar

    [42] 李俊, 陈宁生, 刘美, 等. 2000年易贡乡扎木弄沟滑坡型泥石流主控因素分析[J]. 南水北调与水利科技, 2018, 16(6): 187-193.

    Google Scholar

    [43] 李晓, 李守定, 陈剑, 等. 地质灾害形成的内外动力耦合作用机制[J]. 岩石力学与工程学报, 2008, 27(9): 1792-1792.

    Google Scholar

    [44] 鲁修元, 杨明刚, 赵丹, 等. 西藏易贡藏布扎木弄沟特大型滑坡成因及溃决分析[C]//第六届全国工程地质大会论文集, 2000: 263-264.

    Google Scholar

    [45] 吕杰堂, 王治华, 周成虎. 西藏易贡滑坡堰塞湖的卫星遥感监测方法初探[J]. 地球学报, 2002, (4): 363-368.

    Google Scholar

    [46] 吕杰堂, 王治华, 周成虎. 西藏易贡大滑坡成因探讨[J]. 地球科学, 2003a, 47(1): 107-110.

    Google Scholar

    [47] 吕杰堂, 王治华, 周成虎. 西藏易贡滑坡堰塞湖的卫星遥感监测方法初探[J]. 地球学报, 2003b, 24(4): 363-368.

    Google Scholar

    [48] 刘国权, 鲁修元. 西藏易贡藏布扎木弄沟特大型山体崩塌滑坡泥石流成因分析[J]. 西藏科技, 2000, 7(4): 15-17.

    Google Scholar

    [49] 刘国权, 鲁修元, 李扬. 西藏扎木弄沟山体滑坡和泥石流成因分析[J]. 东北水利水电, 2001a, 19(6): 49-50.

    Google Scholar

    [50] 刘国权, 鲁修元, 李扬. 西藏易贡崩塌滑坡泥石流堆积体溃决分析[J]. 东北水利水电, 2001b, 19(7): 26-27.

    Google Scholar

    [51] 刘宁. 科学制定西藏易贡滑坡堵江减灾预案[J]. 中国水利, 2000, 51(7): 37-38.

    Google Scholar

    [52] 刘伟. 西藏易贡巨型超高速远程滑坡地质灾害链特征研析[J]. 中国地质灾害与防治学报, 2002, 13(3): 11-20.

    Google Scholar

    [53] 刘铮, 李滨, 贺凯, 等. 地震作用下西藏易贡滑坡动力响应特征分析[J]. 地质力学学报, 2020, 26(4): 471-480.

    Google Scholar

    [54] 任金卫, 单新建, 沈军, 等. 西藏易贡崩塌-滑坡-泥石流的地质地貌与运动学特征[J]. 地质论评, 2001, 66(6): 642-647+4.

    Google Scholar

    [55] 邵翠茹. 雅鲁藏布大峡谷地区地震活动性研究[D]. 中国地震局地球物理研究所硕士学位论文, 2009.

    Google Scholar

    [56] 唐方头, 宋键, 曹忠权, 等. 最新GPS数据揭示的东构造结周边主要断裂带的运动特征[J]. 地球物理学报, 2010, 53(9): 2119-2128.

    Google Scholar

    [57] 万海斌. 西藏易贡巨型山体滑坡抢险减灾概况[J]. 中国减灾, 2000, 10(4): 28-31.

    Google Scholar

    [58] 王思敬. 地球内外动力耦合作用与重大地质灾害的成因初探[J]. 工程地质学报, 2002, 10(2): 115-117.

    Google Scholar

    [59] 王绍令, 赵秀锋, 郭东信, 等. 青藏高原冻土对气候变化的响应[J]. 冰川冻土, 1996, 18(S1): 157-165.

    Google Scholar

    [60] 王治华, 吕杰堂. 从卫星图像上认识西藏易贡滑坡[J]. 遥感学报, 2001, 5(4): 312-316.

    Google Scholar

    [61] 王治华. 中国滑坡遥感[J]. 国土资源遥感, 2005, 18(1): 1-7.

    Google Scholar

    [62] 王治华. 大型个体滑坡遥感调查[J]. 地学前缘, 2006, 13(5): 516-523.

    Google Scholar

    [63] 吴玮莹, 许冲. 2014年鲁甸MW 6.2地震触发滑坡新编目[J]. 地震地质, 2018, 40(5): 1140-1148.

    Google Scholar

    [64] 夏式伟. 易贡滑坡-碎屑流-堰塞坝溃决三维数值模拟研究[D]. 上海交通大学硕士学位论文, 2018.

    Google Scholar

    [65] 邢爱国, 徐娜娜, 宋新远. 易贡滑坡堰塞湖溃坝洪水分析[J]. 工程地质学报, 2010, 18(1): 78-83.

    Google Scholar

    [66] 许强, 董思萌. 西藏易贡特大山体崩塌滑坡事件[C]//中国岩石力学与工程实例第一届学术会议论文集. 中国岩石力学与工程学会, 2007: 53-58.

    Google Scholar

    [67] 许强, 李为乐, 董秀军, 等. 四川茂县叠溪镇新磨村滑坡特征与成因机制初步研究[J]. 岩石力学与工程学报, 2017, 36(11): 2612-2628.

    Google Scholar

    [68] 许强, 董秀军, 李为乐. 基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警[J]. 武汉大学学报(信息科学版), 2019, 44(7): 957-966.

    Google Scholar

    [69] 许强. 对滑坡监测预警相关问题的认识与思考[J]. 工程地质学报, 2020, 28(2): 360-374.

    Google Scholar

    [70] 薛果夫, 刘宁, 蒋乃明, 等. 西藏易贡高速巨型滑坡堵江事件的调查与减灾措施分析[C]//第六次全国岩石力学与工程学术大会, 2000: 640-644.

    Google Scholar

    [71] 杨成业, 张涛, 高贵, 等. SBAS-InSAR技术在西藏江达县金沙江流域典型巨型滑坡变形监测中的应用[J]. 中国地质灾害与防治学报, 2022, 33(3): 94-105.

    Google Scholar

    [72] 姚檀栋, 杨志红, 刘景寿. 冰芯记录所揭示的青藏高原升温[J]. 科学通报, 1994, 45(5): 438-441.

    Google Scholar

    [73] 姚檀栋, 刘晓东, 王宁练. 青藏高原地区的气候变化幅度问题[J]. 科学通报, 2000, 51(1): 98-106.

    Google Scholar

    [74] 殷跃平. 西藏波密易贡高速巨型滑坡特征及减灾研究[J]. 水文地质工程地质, 2000, 44(4): 8-11.

    Google Scholar

    [75] 殷跃平. 汶川八级地震地质灾害研究[J]. 工程地质学报, 2008, 16(4): 433-444.

    Google Scholar

    [76] 殷跃平, 王文沛, 张楠, 等. 强震区高位滑坡远程灾害特征研究——以四川茂县新磨滑坡为例[J]. 中国地质, 2017, 44(5): 827-841.

    Google Scholar

    [77] 张永双, 郭长宝, 姚鑫, 等. 青藏高原东缘活动断裂地质灾害效应研究[J]. 地球学报, 2016, 37(3): 277-286.

    Google Scholar

    [78] 张明, 殷跃平, 吴树仁, 等. 高速远程滑坡-碎屑流运动机理研究发展现状与展望[J]. 工程地质学报, 2010, 18(6): 805-817.

    Google Scholar

    [79] 郑光, 许强, 刘秀伟, 等. 2019年7月23日贵州水城县鸡场镇滑坡-碎屑流特征与成因机理研究[J]. 工程地质学报, 2020, 28(3): 541-556.

    Google Scholar

    [80] 周刚炎, 李云中, 李平. 西藏易贡巨型滑坡水文抢险监测[J]. 人民长江, 2000, 31(9): 30-32.

    Google Scholar

    [81] 周鑫, 邢爱国, 陈禄俊. 易贡高速远程滑坡近程凌空飞行数值分析[J]. 上海交通大学学报, 2010, 44(6): 833-838.

    Google Scholar

    [82] 周昭强, 李宏国. 西藏易贡巨型山体滑坡及防灾减灾措施[J]. 水利水电技术, 2000, 42(12): 47-50.

    Google Scholar

    [83] 朱博勤, 聂跃平. 易贡巨型高速滑坡卫星遥感动态监测[J]. 自然灾害学报, 2001, 10(3): 103-107.

    Google Scholar

    [84] 朱成明, 张彩霞. 西藏扎木弄沟地质灾害治理初步探讨[J]. 人民长江, 2015, 46(18): 26-28.

    Google Scholar

    [85] 朱平一, 王成华, 唐邦兴. 西藏特大规模碎屑流堆积特征[J]. 山地学报, 2000, 18(5): 453-456.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(6)

Article Metrics

Article views(3021) PDF downloads(216) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint