Citation: | SUN Jiandong, LI Haili, ZHANG Xuehui, LU Fan, XU Mincheng, LU Zhihui. 2023. The discovery of jasper rocks in the Qibaoshan cobalt-lead-zinc deposit in western Jiangxi Province and its restriction on the genesis of the deposit. Geological Bulletin of China, 42(10): 1718-1727. doi: 10.12097/j.issn.1671-2552.2023.10.009 |
Qibaoshan Co-Pb-Zn deposit is a medium-sized cobalt ore deposit, the main ore body in carboniferous Huanglong Formation dolomite, ore structure is given priority to with granular, colloidal structure, block, layer striate sulfide ore bodies and newly discovered jasper rock spatial dependency, with output, close companions, sandwiched between each other, that with the mineralization has a close symbiosis, belong to the same period deposits; The main trace and rare earth data of the jasper rock show that it is characterized by high silicon, poor aluminum and rich in iron and manganese. The Al/(Al+Fe+Mn) ratio is 0.13~0.16, which is similar to the siliceous rocks of hydrothermal origin. Enrichment of Rb, Ba, U, La, Zr, Hf, depletion of K, Nd, P, Ti, U/Th ratio of 185.83~373.85, Y/Ho ratio of 26.88~50.00, ΣREE is low, ranging from 0.88×10-6~2.16×10-6. The LREE/HREE values range from 0.07 to 0.36, and the fractionation degree of light and light rare earth is not high. The Ce anomaly is not found, and the δEu moderate negative anomaly indicates that the jade rocks material originated from deep seabed hot water, and a small amount of syngenetic seawater was mixed and formed in the Late Paleozoic continental margin rift trough environment. Therefore, it provides direct and favorable evidence that the deposit belongs to the sedimentary origin of submarine volcanic effluents.
[1] | Adachi M, Yamamoto K, Sugisaki R. Hydrothermal chert and associated siliceous rocks from the northern Pacific their geological significance as indication of ocean ridge activity[J]. Sedimentary Geology, 1986, 47(1/2): 125-148. |
[2] | Alibo D S, Nozaki Y. Rare earth elements in seawater: particle association, shale normalization, and Ce oxidation[J]. Geochim. Cosmochim. Acta., 1999, 63: 363-372. doi: 10.1016/S0016-7037(98)00279-8 |
[3] | Bau M, Dulski P. Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge: implications for Y and REE behaviour during near-vent mixing and for the Y/Ho ratio of Proterozoic seawater[J]. Chem. Geol., 1999, 155: 77-90. doi: 10.1016/S0009-2541(98)00142-9 |
[4] | Bischoff J L. Densities of liquids and vapors in boiling NaCl-H2O solutions-A PVTX Summary from 300℃ to 500℃[J]. Am. J., 1991, 291(4): 309-338. |
[5] | Bogdanov Y A. Low-temperature hydrothermal deposits of Franklin seamout, Woodlark Basin, Papua New Guinea[J]. Marine Geology, 1997, 142(1/4): 99-117. |
[6] | Bostrom K, Peterson M N A. The origin of aluminum-poor ferromanganoan sediments in areas of high heat flow on the East Pacific Rise[J]. Marine Geology, 1969, 7(5): 427-447. doi: 10.1016/0025-3227(69)90016-4 |
[7] | Girty G H, Ridge D L, Knaack C, et al. Provenance and depositional setting of Paleozoic chert and argillite, Sierra Nevada, California[J]. Joural of Sedimentary Research, 1996, 66(1): 107-118. |
[8] | Grenne T. Geochemistry of jasper beds from the Ordovician Lokken Ophiolite, Norway: Origin of Proximal and Distal Siliceous Exhalites[J]. Economic Geology, 2005, 100(8): 1511-1527. doi: 10.2113/gsecongeo.100.8.1511 |
[9] | Hekinian R, Hoffert M, Larque P, et al. Hydrothermal Fe and Si oxyhydroxide deposits from South Pacific intraplate volcanoes and East Pacific Rise axial and off-axial regions[J]. Economic Geology, 1993, 88(8): 2099-2121. doi: 10.2113/gsecongeo.88.8.2099 |
[10] | Man R H, Xue C J, Zhao X B, et al. Genesis of the Tuokesai Zn-Pb deposit in the Sayram Massif, Xinjiang, NW China: Constraints from geology, jasperite geochemistry and Si-S-Pb isotopes[J]. Ore Geology Reviews, 2020, 121: 1-11. |
[11] | Mero J L. Hot brines and recent heavy metal deposits in the Red Sea[J]. Chem. Geol., 1971, 7(2): 149-150. doi: 10.1016/0009-2541(71)90039-8 |
[12] | Murray R W, Buchholtz M R B T, Gerlach D C, et al. Rare earth, major, and trace elements in chert from the Franciscan Compled and Monterey Group, California: Assessing REE sources to fine-grained marine sediments[J]. Geochimi. Et Cosmochim. Acta, 1991, 55(7): 1875-1895. doi: 10.1016/0016-7037(91)90030-9 |
[13] | Murray R W, Buchholtz M R B T, Gerlach D C, et al. Rare earth, major, and trace element composition of Monterey and DSDP chert and associated host sediment: Assessing the influence of chemical fractionation during diagenesis[J]. Geochimica Et Cosmochimica Acta, 1992a, 56(7): 2657-2671. doi: 10.1016/0016-7037(92)90351-I |
[14] | Murray R W, Buchholtz M R B T, Gerlach D C, et al. Interoceanic variation in the rare earth, major, and trace element depositional chemistry of chert: Perspectives gained from the DSDP and ODP record[J]. Geochimi. Et Cosmochim. Acta., 1992b, 56(5): 1897-1913. doi: 10.1016/0016-7037(92)90319-E |
[15] | Murray R W. Chemical criteria to identify the depositional environment of chert: general principles and applications[J]. Sedimentary Geology, 1994, 90(3/4): 213-232. |
[16] | Nozaki Y, Zhang, Amakawa H. The fractionation between Y and Ho in the marine environment[J]. Earth Planet. Sci. Lett., 1997, 148: 329-340. doi: 10.1016/S0012-821X(97)00034-4 |
[17] | Sun S S, McDonough W F. Chemical and isotope systematics of oceanic basalts: Implications for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in Ocean Basins. Geological Society of London, Special Publications, 1989, 42: 313-345. |
[18] | Wen H J, Fan H F, Tian S H, et al. The formation conditions of the early Ediacaran cherts, South China[J]. Chem. Geol., 2016, 430: 45-69. doi: 10.1016/j.chemgeo.2016.03.005 |
[19] | Yamamoto K. Geochemical characteristics and depositional environments of cherts and associated rocks in the Franciscan Shimanto Terranes[J]. Sedimentary Geology, 1987, 52(1/2): 65-108. |
[20] | 陈先沛, 高计元, 陈多福, 等. 热水沉积作用的概念和几个岩石学标志[J]. 沉积学报, 1992, 10(3) : 124-130. doi: 10.14027/j.cnki.cjxb.1992.03.015 |
[21] | 丁少辉, 王昆, 惠军, 等. 江西省成矿规律图说明书[M]. 北京: 地质出版社, 2014. |
[22] | 郭云峰, 安芳. 别子型火山成因块状硫化物矿床的地质和地球化学特征[J]. 世界地质, 2018, 37(2): 113-123. |
[23] | 侯增谦, 韩发, 夏林圻, 等. 现代与古代海底热水成矿作用——以若干火山成因块状硫化物矿床为例[M]. 北京: 地质出版社, 2003. |
[24] | 华明弟. 论莫托沙拉碧玉铁锰矿床的火山-沉积成因[J]. 新疆地质, 1985, (1): 14-23. |
[25] | 江西铜业集团公司七宝山矿业有限公司[R]. 江西省上高县江西铜业集团公司七宝山铅锌矿资源储量核实报告. 2013. |
[26] | 黎彤. 大洋地壳和大陆地壳的元素丰度[J]. 大地构造与成矿学, 1984, 8(1): 19-27. doi: 10.16539/j.ddgzyckx.1984.01.004 |
[27] | 黎彤. 中国陆壳及其沉积层和上陆壳的化学元素丰度[J]. 地球化学, 1994, 23(2): 140-145. doi: 10.19700/j.0379-1726.1994.02.005 |
[28] | 李红阳, 杨秋荣, 李英杰. 现代成矿理论[M]. 北京: 地震出版社, 2006. |
[29] | 卢宗柳, 莫江平. 新疆阿吾拉勒富铁矿地质特征和矿床成因[J]. 地质与勘探, 2006, 42(5): 8-11. doi: 10.3969/j.issn.0495-5331.2006.05.002 |
[30] | 舒良树. 华南构造演化的基本特征[J]. 地质通报, 2012, 31(7): 1035-1053. |
[31] | 孙剑, 朱祥坤, 李志红, 等. 海南石碌铁矿碧玉及其对矿床成因的制约[J]. 岩石学报, 2014, 30(5): 1269-1278. |
[32] | 孙治雷, 李军, 孙致学, 等. 热液喷口系统中Fe-Si氧化物沉淀体的形成及微生物的作用[J]. 地球科学进展, 2010, 25(12): 1325-1336. |
[33] | 汪明, 左慧, 石富文, 等. 广西大厂锡多金属矿床研究综述[J]. 西部探矿工程, 2014, 26(1): 167-170. |
[34] | 王小红, 杨合群, 孙南一, 等. 额济纳旗碧玉岭铜矿田成矿特征及找矿标志[J]. 西北地质, 2008, (4): 69-76. |
[35] | 王学平, 周建廷, 范爱春. 江西省上高县七宝山铅锌铁钴矿床成矿模式[J]. 东华理工大学学报(自然科学版), 2011, 34(3): 248-256. doi: 10.3969/j.issn.1674-3504.2011.03.008 |
[36] | 杨明桂, 王发宁, 曾勇, 等. 江西北部金属成矿地质[M]. 武汉: 中国地质大学出版社, 2004. |
[37] | 翟裕生. 中国重要成矿系列的形成机制和结构特征[M]. 北京: 地质出版社, 2008. |
Geological map(a) and geological profile map(b) of Qibaoshan Co-Pb-Zn deposit filed
Normalized trace element spider diagrams(a) and REE patterns(b)
Al-Fe-Mn diagram
Al2O3/100-SiO2-Fe2O3/100-SiO2(a) and Al2O3/(Al2O3+Fe2O3)-Fe2O3/TiO2(b) diagrams