2023 Vol. 42, No. 9
Article Contents

TANG Mengjing, WANG Maomao, JIA Hongyi, WANG Yandi, YAN Bing. 2023. Analogue modeling of development of rollover anticline and crestal collapse faults of Huimin sag in Bohai Bay basin. Geological Bulletin of China, 42(9): 1505-1515. doi: 10.12097/j.issn.1671-2552.2023.09.007
Citation: TANG Mengjing, WANG Maomao, JIA Hongyi, WANG Yandi, YAN Bing. 2023. Analogue modeling of development of rollover anticline and crestal collapse faults of Huimin sag in Bohai Bay basin. Geological Bulletin of China, 42(9): 1505-1515. doi: 10.12097/j.issn.1671-2552.2023.09.007

Analogue modeling of development of rollover anticline and crestal collapse faults of Huimin sag in Bohai Bay basin

More Information
  • The structure, formation and mechanisms of complex fault systems developed in extensional basins remain a challenging issue in the analysis of hydrocarbon-bearing basins.We used sandbox analogy modeling method to investigate the development and formation mechanism of rollover and crestal collapse faults above typical extensional listric faults in the Huimin depression of the Bohai Bay basin.By designing two sets of controlled experiments(E1 and E2), the influence and control mechanisms of the development of detachment and internal depressional faults in the Huimin Sag were investigated.Analogy experiments E1 reproduce the formation process of rollover and crestal collapse faults in the Huimin Sag, indicating that the Ningnan fault actually controls the morphology of the hanging wall and the development of the secondary fault system.The crestal collapse fault system is asymmetric and is composed of antithetic- and synthetic faults, the newly developed conjugate faults are contemporaneously active, and the fault activity shows a pattern of lateral migration.The statistics of fault displacement indicate that two sets of rupture surfaces are simultaneously active and in conjugate relationship.This is consistent with the Coulomb-Mohr failure criterion within the extensional wedge, indicating that the wedge is at or near the critical state.In another set of E2 experiment, the development of the Linyi and Xiakou faults offset the crestal collapse faults formed earlier, and the Linnan depression began to form and widen, eventually forming in a structural pattern consistent with the present-day structural profile.This study reveals the development mechanism of rollover and its associated crestal collapse fault in typical extensional fault-related folds, which has important implications for extensional fault system analysis.

  • 加载中
  • [1] Adam J, Urai J L, Wieneke B, et al. Shear localisation and strain distribution during tectonic faulting—new insights from granular-flow experiments and high-resolution optical image correlation techniques[J]. Journal of Structural Geology, 2005, 27: 283-301. doi: 10.1016/j.jsg.2004.08.008

    CrossRef Google Scholar

    [2] Dahlen F A. Noncohesive critical Coulomb wedges: An exact solution[J]. Journal of Geophysical Research: Solid Earth, 1984, 89(B12): 10125-10133. doi: 10.1029/JB089iB12p10125

    CrossRef Google Scholar

    [3] Del Ventisette C, Bonini M, Agostini A, et al. Using different grain-size granular mixtures(quartz and K-feldspar sand)in analogue extensional models[J]. Journal of Structural Geology, 2019, 129: 103888. doi: 10.1016/j.jsg.2019.103888

    CrossRef Google Scholar

    [4] Dewey J F, Holdsworth R E, Strachan R A. Transpression and transtension zones[J]. Geological Society, London, Special Publications, 1998, 135(1): 1-14. doi: 10.1144/GSL.SP.1998.135.01.01

    CrossRef Google Scholar

    [5] Ellis P G, McClay K R. Listric extensional fault systems-results of analogue model experiments[J]. Basin Research, 1988, 1(1): 55-70. doi: 10.1111/j.1365-2117.1988.tb00005.x

    CrossRef Google Scholar

    [6] Fossen H. Structural Geology[M]. Cambridge University Press, Cambridge, 2016.

    Google Scholar

    [7] Groshong R. Unique determination of normal fault shape from hanging-wall bed geometry in detached half grabens[J]. Eclogae Geologicae Helvetiae, 1990, 83(3): 455-471.

    Google Scholar

    [8] Hamblin W K. Origin of "reverse drag" on the downthrown side of normal faults[J]. Geological Society of America Bulletin, 1965, 76(10): 1145-1164. doi: 10.1130/0016-7606(1965)76[1145:OORDOT]2.0.CO;2

    CrossRef Google Scholar

    [9] Harding T P. Identification of wrench faults using subsurface structural data: criteria and pitfalls[J]. AAPG Bulletin, 1990, 74(10): 1590-1609.

    Google Scholar

    [10] Khalil S M, McClay K R. Extensional fault-related folding, northwestern Red Sea, Egypt[J]. Journal of Structural Geology, 2002, 24(4): 743-762. doi: 10.1016/S0191-8141(01)00118-3

    CrossRef Google Scholar

    [11] Krantz R W. Measurements of friction coefficients and cohesion for faulting and fault reactivation in laboratory models using sand and sand mixtures[J]. Tectonophysics, 1991, 188: 203-207. doi: 10.1016/0040-1951(91)90323-K

    CrossRef Google Scholar

    [12] McClay K R. Extensional fault systems in sedimentary basins: a review of analogue model studies[J]. Marine and Petroleum Geology, 1990, 7(3): 206-233. doi: 10.1016/0264-8172(90)90001-W

    CrossRef Google Scholar

    [13] McClay K R, Scott A D. Experimental models of hangingwall deformation in ramp-flat listric extensional fault systems[J]. Tectonophysics, 1991, 188(1/2): 85-96.

    Google Scholar

    [14] Nunns A G. Structural restoration of seismic and geologic sections in extensional regimes[J]. AAPG Bulletin, 1991, 75(2): 278-297.

    Google Scholar

    [15] Shaw J H, Hook S C, Sitohang E P. Extensional fault-bend folding and synrift deposition: An example from the Central Sumatra Basin, Indonesia[J]. AAPG Bulletin, 1997, 81(3): 367-379.

    Google Scholar

    [16] Shaw J H, Connors C D, Suppe J. Seismic interpretation of contractional fault-related folds[M]. American Association of Petroleum Geologists, 2005.

    Google Scholar

    [17] Sylvester A G. Strike-slip faults[J]. Geological Society of America Bulletin, 1988, 100(11): 1666-1703. doi: 10.1130/0016-7606(1988)100<1666:SSF>2.3.CO;2

    CrossRef Google Scholar

    [18] Sun C, Jia D, Yin H, et al. Sandbox modeling of evolving thrust wedges with different preexisting topographic relief: Implications for the Longmen Shan thrust belt, eastern Tibet[J]. Journal of Geophysical Research: Solid Earth, 2016, 121: 4591-4614. doi: 10.1002/2016JB013013

    CrossRef Google Scholar

    [19] Suppe J. Geometry and kinematics of fault-bend folding[J]. American Journal of Science, 1983, 283(7): 684-721.

    Google Scholar

    [20] Wang D, Wu Z P, Yang L L, et al. Growth and linkage of the Xiakou fault in the Linnan Sag, Jiyang Depression, Eastern China: Formation mechanism and sedimentation response[J]. Marine and Petroleum Geology, 2020, 116: 104319.

    Google Scholar

    [21] Xiao H B, Suppe J. Origin of rollover[J]. AAPG Bulletin, 1992, 76(4): 509-529.

    Google Scholar

    [22] Xiao H B, Dahlen F A, Suppe J. Mechanics of extensional wedges[J]. Journal of Geophysical Research: Solid Earth, 1991, 96(B6): 10301-10318.

    Google Scholar

    [23] Zhu Y B, Liu S F, Zhang B, et al. Reconstruction of the Cenozoic deformation of the Bohai Bay Basin, North China[J]. Basin Research, 2020, 33: 364-381.

    Google Scholar

    [24] 封东晓. 张扭构造的几何学, 运动学特征及其石油地质意义[D]. 中国地质大学(北京)博士学位论文, 2015.

    Google Scholar

    [25] 何登发, Suppe J, 贾承造. 断层相关褶皱理论与应用研究新进展[J]. 地学前缘, 2005, 12(4): 353-364.

    Google Scholar

    [26] 贾东, 陈竹新, 张惬, 等. 东营凹陷伸展断弯褶皱的构造几何学分析[J]. 大地构造与成矿学, 2005, 29(3): 295-302.

    Google Scholar

    [27] 贾东, 李一泉, 王毛毛, 等. 断层相关褶皱的三维构造几何学分析: 以川西三维地震工区为例[J]. 岩石学报, 2011, 27(3): 732-740.

    Google Scholar

    [28] 李德生. 渤海湾含油气盆地的地质和构造特征[J]. 石油学报, 1980, 1(1): 6-20.

    Google Scholar

    [29] 陆克政, 漆家福, 戴俊生, 等. 渤海湾新生代含油气盆地构造模式[M]. 北京: 地质出版社, 1997.

    Google Scholar

    [30] 马立成, 施炜, 李建华, 等. 庐山岩浆核杂岩隆起-快速伸展变形特征和时代[J]. 地质通报, 2023, 42(4): 589-599.

    Google Scholar

    [31] 漆家福, 肖焕钦, 张卫刚. 东营凹陷主干边界断层(带)构造几何学、运动学特征及成因解释[J]. 石油勘探与开发, 2003, 30(3): 8-12.

    Google Scholar

    [32] 沈礼, 贾东, 尹宏伟, 等. 基于粒子成像测速(PIV)技术的褶皱冲断构造物理模拟[J]. 地质论评, 2012, 58: 73-82.

    Google Scholar

    [33] 苏金宝, 朱文斌, 贾东, 等. 伸展断层相关褶皱的几何学分析及其在车镇凹陷中的应用[J]. 地质学报, 2011, 85(10): 563-1573.

    Google Scholar

    [34] 王义天, 李继亮. 走滑断层作用的相关构造[J]. 地质科技情报, 1999, 18(3): 30-34.

    Google Scholar

    [35] 杨克基, 漆家福, 余一欣, 等. 渤海湾地区断层相关褶皱及其油气地质意义[J]. 石油地球物理勘探, 2016, 51(3): 625-636.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(1)

Article Metrics

Article views(1422) PDF downloads(85) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint