2023 Vol. 42, No. 6
Article Contents

ZENG Junjie, PU Wanfeng, LIU Bin, YUAN Zhen, YANG Zhuang. 2023. Magmatism in the Early Triassic continental margin arc environment in the West Qinling mountains: Evidence from zircon U-Pb ages and geochemical characteristics of the Nazha pluton. Geological Bulletin of China, 42(6): 1001-1012. doi: 10.12097/j.issn.1671-2552.2023.06.012
Citation: ZENG Junjie, PU Wanfeng, LIU Bin, YUAN Zhen, YANG Zhuang. 2023. Magmatism in the Early Triassic continental margin arc environment in the West Qinling mountains: Evidence from zircon U-Pb ages and geochemical characteristics of the Nazha pluton. Geological Bulletin of China, 42(6): 1001-1012. doi: 10.12097/j.issn.1671-2552.2023.06.012

Magmatism in the Early Triassic continental margin arc environment in the West Qinling mountains: Evidence from zircon U-Pb ages and geochemical characteristics of the Nazha pluton

More Information
  • The lithology of Nazha pluton in Hezuo, Gansu Province is granite porphyry. Through the study of rock geology, LA-ICP-MS zircon U-Pb age, and rock geochemistry, the genetic mechanism and tectonic significance of the Nazha pluton are explored, providing new evidences for the tectonic evolution of the Indosinian period in this region. The rock geochemical analysis of granite porphyry shows that the content of SiO2 is 69.50%~73.48%, the content of TiO2 is 0.008%~0.084%, the content of CaO is 0.22%~2.07%, the content of Na2O is 2.96%~3.40%, the content of K2O is 4.38%~4.84%, the content of Al2O3 is 14.74%~16.19%, the aluminum saturation index A/CNK value is 1.49 ~ 1.91(>1.1), and the Rittman index σ is 1.88~2.27. The result indicates the granite belonging to high potassium calc alkaline peraluminous S-type granite. Total rare earth element(ΣREE)content is 42.82×10-6~62. 85×10-6, LREE/HREE value is 16.55~24.19, light rare earth element is relatively enriched, and the δEu value is 0.79~1.41. High field strength elements P and Ti are relatively deficient, the Nb and Ta are slightly deficient, and large ion lithophile elements and light rare earth elements Th, Rb and K are relatively enriched. The geochemical characteristics of rocks show that the Nazha pluton originated from the partial melting of metamorphic sandstones and mudstones, with the high Mg# value (67~77), and the low total rare earth element content, with some. The mantle-derived components added during diagenesis. LA-ICP-MS zircon U-Pb age (250.4±1.0 Ma) was obtained from granite porphyry and formed in Early Indosinian period. Combined with the regional geological background, the author believes that the Xiahe-Hezuo area in West Qinling region was in the continental margin arc environment of crustal and lithosphere thickening during the Early Indosinian period, and the Nazha pluton is the product of the magmatism in this stage.

  • 加载中
  • [1] Ather R, Holl A, Hegner E, et al. High-potassium, calc-alkaline I-type plutonism in the European Variscides: northern Vosges (France)and northern Schwarzwald (Germany)[J]. Lithos, 2000, 50: 51-73. doi: 10.1016/S0024-4937(99)00052-3

    CrossRef Google Scholar

    [2] Batchelor R A, Bowden P. Petrogenetic interpretation of granitoid rock series using multicationic parameters[J]. Chemical Geology, 1985, (48): 43-55.

    Google Scholar

    [3] De La Roche H, Leterrier J, Grandclaude P, et al. A classification of volcanic and plutonic rocks using R1-R2 diagram and major-element analyses-Its relationships with current nomenclature[J]. Chemical Geology, 1980, 29: 183-210. doi: 10.1016/0009-2541(80)90020-0

    CrossRef Google Scholar

    [4] Jiang Y H, Jin G D, Liao S Y, et al. Geochemical and Sr-Nd-Hf isotopic constraints on the origin of Late Triassic granitoids from the Qinling orogen, central China: Implications for a continental arc to continent-continent collision[J]. Lithos, 2010, 117: 183-197. doi: 10.1016/j.lithos.2010.02.014

    CrossRef Google Scholar

    [5] Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and Refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(15): 1535-1546. doi: 10.1007/s11434-010-3052-4

    CrossRef Google Scholar

    [6] Luo B J, Zhang H F, Xun W C, et al. The Middle Triassic Meiwu Batholith, West Qinling, Central China: Implications for the Evolution of Compositional Diversity in a Composite Batholith[J]. Journal of Petrology, 2015, 56(6): 1139-1172. doi: 10.1093/petrology/egv032

    CrossRef Google Scholar

    [7] Maniar Pd, Piccoli Pm. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989, 101(5): 635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    CrossRef Google Scholar

    [8] Mao J W, Qiu Y M, Goldfarb R J, et al. Geology, distribution and classification of gold deposits in the Western Qinling belt, Central China[J]. Mineralium Deposita, 2002, 37(3/4): 352-377.

    Google Scholar

    [9] Middlemost A K. Magmas and magmatic rocks[M]. London: Longman, 1985: 1-266.

    Google Scholar

    [10] Middlemost A K. Naming materials in the magma/igneous rock system[J]. Earth Science Reviews, 1994, 37(3/4): 215-224.

    Google Scholar

    [11] Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25: 956-983. doi: 10.1093/petrology/25.4.956

    CrossRef Google Scholar

    [12] Peccerillo R, Taylor S R. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contrib. Mineral Petrol, 1976, 58: 63-81. doi: 10.1007/BF00384745

    CrossRef Google Scholar

    [13] Qiu K F, Deng J. Petrogenesis of granitoids in the Dewulu skarn copper deposit: implications for the evolution of the Paleotethys ocean and mineralization in Western Qinling, China[J]. Ore Geology Reviews, 2017, 90: 1078-1098. doi: 10.1016/j.oregeorev.2016.09.027

    CrossRef Google Scholar

    [14] Qiu K F, Yu H C. Nature and origin of Triassic igneous activity in the Western Qinling Orogen: the Wenquan composite pluton example[J]. International Geology Review, 2018, 60(2): 242-266. doi: 10.1080/00206814.2017.1334598

    CrossRef Google Scholar

    [15] Rapp R P, Shimizu N, Norman M D. et al. Reaction Between Slab-derived melts and peridotite in the mantle wedge: Experimental constraints at 3.8 GPa[J]. Chemical Geology, 1999, 160(4): 335-356. doi: 10.1016/S0009-2541(99)00106-0

    CrossRef Google Scholar

    [16] Sui J X, Li J W, We G, et al. The Dewulu reduced Au-Cu skarn deposit in the Xiahe-Hezuo district, West Qinling orogen, China: Implications for an intrusion-related gold system[J]. Ore Geology Reviews, 2017, 80: 1230-1244. doi: 10.1016/j.oregeorev.2016.09.018

    CrossRef Google Scholar

    [17] Sun S, Mcdonough W. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    [18] Taylor S R, Mclennan S M. The geochemical evolution of the continental crust[J]. Review in Geophysics, 1995, 33: 241-265. doi: 10.1029/95RG00262

    CrossRef Google Scholar

    [19] Tuttle O F, Bowen N L. Origin of granite in the light of experimental studies in the system NaAlSi3O8-KAlSi3O8-SiO2-H2O[J]. Geological Society of America Memoirs, 1958, 74: 1-146.

    Google Scholar

    [20] Yu H C, Guo C A, Qiu K F, et al. Geochronological and geochemical Constraints on the Formation of the Giant Zaozigou Au-Sb deposit, west Qinling, China[J]. Minerals, 2019, 9(1): DOI: 10.3390/min9010037.

    CrossRef Google Scholar

    [21] 陈明辉, 郭素雄, 徐军伟, 等. 德乌鲁岩体内外接触带金多金属成矿区成岩成矿地质地球化学特征及成因探讨[J]. 矿产与地质, 2016, 30(4): 517-530. doi: 10.3969/j.issn.1001-5663.2016.04.001

    CrossRef Google Scholar

    [22] 代文军, 陈耀宇. 甘肃枣子沟金矿区中性岩脉与成矿关系[J]. 黄金, 2012, 33(1): 19-24.

    Google Scholar

    [23] 第鹏飞. 西秦岭夏河-合作早子沟金矿床地球化学特征及成矿机制研究[D]. 兰州大学博士学位论文, 2018.

    Google Scholar

    [24] 冯小明, 李注苍, 齐建宏. 西秦岭德乌鲁岩体成因及地质意义——来自岩石地球化学的证据[J]. 岩石矿物学杂志, 2021, 40(2): 347-362. doi: 10.3969/j.issn.1000-6524.2021.02.012

    CrossRef Google Scholar

    [25] 冯益民, 曹宣铎, 张二朋, 等. 西秦岭造山带的演化、构造格局和性质[J]. 西北地质, 2003, (1): 1-10. doi: 10.3969/j.issn.1009-6248.2003.01.001

    CrossRef Google Scholar

    [26] 耿建珍, 黄雅琪, 姜桂鹏, 等. 西秦岭早子沟金锑矿床含矿英安斑岩年代学及其成因[J]. 地质调查与研究, 2019, 42(3): 166-173. doi: 10.3969/j.issn.1672-4135.2019.03.002

    CrossRef Google Scholar

    [27] 龚全胜, 代文军, 武雪梅. 西秦岭早子沟金矿含矿岩体地球化学特征及成因机制探讨[J]. 矿产勘查, 2019, 10(4): 854-862. doi: 10.3969/j.issn.1674-7801.2019.04.016

    CrossRef Google Scholar

    [28] 何彤彤, 华永成, 逯文辉. 西秦岭德乌鲁-美武地区中生代岩体年代学、地球化学特征及与成矿关系研究[J]. 黄金, 2020, 41(7): 17-25.

    Google Scholar

    [29] 贾儒雅, 王涛, 李康宁, 等. 西秦岭德乌鲁含矿岩体及其包体的岩石学成因和构造意义[J]. 地学前缘, 2019, 26(5): 290-303. doi: 10.13745/j.esf.sf.2019.9.23

    CrossRef Google Scholar

    [30] 金维浚, 张旗, 何登发, 等. 西秦岭埃达克岩的SHRIMP定年及其构造意义[J]. 岩石学报, 2005, 21(3): 959-966.

    Google Scholar

    [31] 靳晓野, 李建威, 隋吉祥, 等. 西秦岭夏河-合作地区德乌鲁杂岩体的侵位时代、岩石成因及构造意义[J]. 地球科学与环境学报, 2013, 35(3): 20-38. doi: 10.3969/j.issn.1672-6561.2013.03.002

    CrossRef Google Scholar

    [32] 刘伯崇, 李康宁, 史海龙, 等. 西秦岭甘青交界一带晚三叠世火山岩岩石成因及构造指示意义[J]. 现代地质, 2018, 32(4): 704-717.

    Google Scholar

    [33] 骆必继, 张宏飞, 肖尊奇. 西秦岭印支早期美武岩体的岩石成因及其构造意义[J]. 地学前缘, 2012, 19(3): 199-213.

    Google Scholar

    [34] 李春昱. 中国的板块构造轮廓[J]. 中国地质科学院院报, 1980, 2(1): 11-22.

    Google Scholar

    [35] 路凤香, 桑隆康, 邬金华, 等. 岩石学[M]. 北京: 地质出版社, 2002.

    Google Scholar

    [36] 李康宁, 贾儒雅, 李鸿睿, 等. 西秦岭甘肃夏河-合作地区与中酸性侵入岩有关的金铜多金属成矿系统及找矿预测[J]. 地质通报, 2020, 39(8): 1191-1203.

    Google Scholar

    [37] 毛景文. 西秦岭地区造山型与卡林型金矿床[J]. 矿物岩石地球化学通报, 2001, (1): 11-13.

    Google Scholar

    [38] 任纪舜, 姜春发, 张正坤, 等. 中国大地构造及其演化[M]. 北京: 科学出版社, 1980.

    Google Scholar

    [39] 任纪舜, 张正坤, 牛宝贵, 等. 论秦岭造山带——中朝与扬子陆块的拼合过程[C]//叶连俊, 钱祥麟, 张国伟. 秦岭造山带学术讨论会论文选集. 西安: 西北大学出版社, 1991: 99-110.

    Google Scholar

    [40] 韦萍, 莫宣学, 喻学惠, 等. 西秦岭夏河花岗岩的地球化学、年代学及地质意义[J]. 岩石学报, 2013, 29(11): 3981-3992.

    Google Scholar

    [41] 肖庆辉, 邓晋福, 马大铨, 等. 花岗岩研究思维与方法[M]. 北京: 地质出版社, 2002.

    Google Scholar

    [42] 闫臻. 西秦岭晚古生代弧前盆地沉积与成矿作用[D]. 中国科学院研究生院(地质与地球物理研究所)博士学位论文, 2002.

    Google Scholar

    [43] 张德贤, 束正祥, 曹汇, 等. 西秦岭造山带夏河-合作地区印支期岩浆活动及成矿作用——以德乌鲁石英闪长岩和老豆石英闪长斑岩为例[J]. 中国地质, 2015, 42(5): 1257-1273.

    Google Scholar

    [44] 张国伟, 张宗清, 董云鹏, 等. 秦岭造山带主要构造岩石地层单元的构造性质及其大地构造意义[J]. 岩石学报, 1995, 11(2): 101-113.

    Google Scholar

    [45] 张国伟, 张本仁, 袁学诚, 等. 秦岭造山带与大陆动力学[M]. 北京: 科学出版社, 2001.

    Google Scholar

    [46] 张国伟, 郭安林, 姚安平. 中国大陆构造中的西秦岭-松潘大陆构造结[J]. 地学前缘, 2004, 11(3): 23-32.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(2)

Article Metrics

Article views(1225) PDF downloads(90) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint