2023 Vol. 42, No. 4
Article Contents

YUAN Yuelei, LIU Shengchen, LIU Xuguang, CHEN Yanfei, XU Yaqing, FAN Xiao, HUO Qinglong. 2023. The structural-alteration zoning and mineralization of Dayingezhuang gold deposit, Jiaodong peninsula. Geological Bulletin of China, 42(4): 576-588. doi: 10.12097/j.issn.1671-2552.2023.04.007
Citation: YUAN Yuelei, LIU Shengchen, LIU Xuguang, CHEN Yanfei, XU Yaqing, FAN Xiao, HUO Qinglong. 2023. The structural-alteration zoning and mineralization of Dayingezhuang gold deposit, Jiaodong peninsula. Geological Bulletin of China, 42(4): 576-588. doi: 10.12097/j.issn.1671-2552.2023.04.007

The structural-alteration zoning and mineralization of Dayingezhuang gold deposit, Jiaodong peninsula

More Information
  • As a large gold deposit in the northwest of Jiaodong peninsula, Dayingezhuang gold deposit is an altered rock-control gold deposit in fracture zone.The zoning of structural alteration of this deposit is important to the deep peripheral prospecting of deposits in the northwest of Jiaodong.This study presents the zoning of structural-alteration, the petrogenesis, geochemistry, and calculation of tectonic stress, to reveal the structural geochemistry and structural physicochemical process of structural alteration of the Dayingezhuang gold deposit.From the distal ore surrounding rock to the ore body: ①the zonation pattern of structural alteration is weakly potassic alteration granitic rock → strongly potassic alteration granitic rock → phyllic and potassic alteration granitic rock → beresite; ②The paleotectonic differential stress have an increase trend; ③Si, Na, Ba and Srwaslost, K, Fe, Cu, Zn and Pb was externally supplied, and Au increased steadily in the whole mineralized process.The content of elements has a slight varies from unaltered rock to weakly potassic alteration granitic rock, with large amplitudes of variations from strongly potassic alteration granitic rock to beresite.During the mineralization process, the tectonic stress field and the migration of chemical compositions from rocks often display coupling behavior, as fracture and extensive space are often well developed within the rocks during the sericitization due to the relatively large paleotectonic differential stress, and this process is combined with the large variation in its compositions associated with intensive hydrothermal activity; all these factors together facilitate mineralization.

  • 加载中
  • [1] Chai P, Zhang Z Y, Hou Z Q. Geological and fluid inclusion constraints on gold deposition processes of the Dayingezhuang gold deposit, Jiaodong peninsula, China[J]. Acta Geologica Sinica(English Edition), 2019a, 93(4): 955-971. doi: 10.1111/1755-6724.13849

    CrossRef Google Scholar

    [2] Chai P, Zhang H R, Dong L L, et al. Geology and ore-forming fluids of the Dayingezhuang gold deposit, Jiaodong peninsula, eastern China: implications for mineral exploration[J]. Journal of Geochemical Exploration, 2019b, 204: 224-239. doi: 10.1016/j.gexplo.2019.06.001

    CrossRef Google Scholar

    [3] Chen F Y, Joris M G. Hydrothermal alteration of hemi-pelagic sediments: experimental evaluation of geochemical process in shallow subduction zones[J]. Geochemistry, 2001, 16: 1055-1058.

    Google Scholar

    [4] Deng J, Wang Q F, Santosh M, et al. Remobilization of metasomatized mantle lithosphere: A new model for the Jiaodong gold province, eastern China[J]. Mineralium Deposita, 2020, 55(2): 257-274. doi: 10.1007/s00126-019-00925-0

    CrossRef Google Scholar

    [5] Deng J, Wang Q F, Wan L, et al. A multifractal analysis of mineralization characteristics of the Dayingezhuang disseminated-veinlet gold deposit in the Jiaodong gold province of China[J]. Ore Geology Reviews, 2011, 40(1): 54-64. doi: 10.1016/j.oregeorev.2011.05.001

    CrossRef Google Scholar

    [6] Eilu P, Mikucki E J, Dugdale A L. Alteration zoning and primary geochemical dispersion at the Bronzewing lode-gold deposit, Western Australia[J]. Mineralium Deposita, 2001, 36: 13-31. doi: 10.1007/s001260050283

    CrossRef Google Scholar

    [7] Goldfarb R J, Baker T, Dube B, et al. Distribution, character and genesis of gold deposits in metamorphic terranes[J]. Economic Geology 100th Anniversary: 2005: 407-450.

    Google Scholar

    [8] Goldfarb R J, Groves D I, Gardoll S. Orogenic gold and geologic time: A global synthesis[J]. Ore Geology Reviews, 2001, 18(1): 12-75.

    Google Scholar

    [9] Goldfarb R J, Hart C J R, Davis G, et al. East Asian gold: Deciphering the anomaly of Phanerozoic gold in Precambrian cratons[J]. Economic Geology, 2007, 102(3): 341-346. doi: 10.2113/gsecongeo.102.3.341

    CrossRef Google Scholar

    [10] Li W, Cook N, Xie G Q, et al. Complementary textural, trace element and isotope analysis of sulfides constrain ore-forming processes for the slate-hosted Yuhengtang Au deposit, South China[J]. Economic Geology, 2021, 116(8): 1825-1848. doi: 10.5382/econgeo.4847

    CrossRef Google Scholar

    [11] Li W, Cook N, Xie G Q, et al. Textures and trace element signatures of pyrite and arsenopyrite from the Gutaishan Au-Sb deposit, south China[J]. Mineralium Deposita, 2019, 54(4): 591-610. doi: 10.1007/s00126-018-0826-0

    CrossRef Google Scholar

    [12] Liu R X, Lv G X, Wang F Z. Methods for Calculation of Geogenetic Depth[J]. Journal of China University of Geosciences, 2004, 15(2): 145-151.

    Google Scholar

    [13] Liu X D, Ding Z J, Song M C, et al. Geology and mineralization of the Dayin'gezhuang supergiant gold deposit(180 t)in the Jiaodong Peninsula, China: A review[J]. China Geology, 2022, 5: 696-721.

    Google Scholar

    [14] Mao J W, Wang Y T, Zhang Z H, et al. Geodynamic settings of Mesozoic large-scale mineralization in North China and adjacent areas[J]. Science in China(Series D), 2003, 46(8): 838-851.

    Google Scholar

    [15] McCormick J W. Transmission electron microscopy of experimentally deformed syntheticquarty[D]. Univ. Calif. Los Angeles., PhD thesis, 1977: 6253-6262.

    Google Scholar

    [16] 戴雪灵, 邓湘伟, 彭省临, 等. 玲珑花岗岩在大尹格庄金矿成矿系统中的作用[J]. 地质与勘探, 2011, 47(3): 370-379.

    Google Scholar

    [17] 翟明国, 范宏瑞, 杨进辉, 等. 非造山带型金矿——胶东型金矿的陆内成矿作用[J]. 地学前缘, 2004, 11(1): 85-98. doi: 10.3321/j.issn:1005-2321.2004.01.005

    CrossRef Google Scholar

    [18] 高帮飞, 杨立强, 王庆飞, 等. 胶东大尹格庄金矿床控矿显微构造特征[J]. 黄金, 2007, 28(1): 9-12. doi: 10.3969/j.issn.1001-1277.2007.01.003

    CrossRef Google Scholar

    [19] 解天赐, 戴长国, 李瑞翔, 等. 胶东大尹格庄-曹家洼金矿床三维空间特征及矿化富集规律新认识[J]. 地质通报, 2022, 41(6): 986-992.

    Google Scholar

    [20] 李德秀, 高帮飞, 刘琰, 等. 大尹格庄金矿床构造控矿规律及找矿意义[J]. 地质与勘探, 2006, 42(4): 32-35. doi: 10.3969/j.issn.0495-5331.2006.04.007

    CrossRef Google Scholar

    [21] 李伟, 谢桂青, 张志远, 等. 流体包裹体和C-H-O同位素对湘中古台山金矿床成因制约[J]. 岩石学报, 2016, 32(11): 3489-3506.

    Google Scholar

    [22] 李子英, 张瑞忠, 周春生, 等. 胶东大尹格庄金矿床控矿构造系统[J]. 金属矿山, 2010, 405(3): 86-90.

    Google Scholar

    [23] 刘庚寅, 杨斌, 彭省临. 胶西北大尹格庄金矿岩石化学与成矿作用[J]. 中国有色金属学报, 2012, 22(3): 743-750

    Google Scholar

    [24] 刘瑞珣. 显微构造地质学[M]. 北京: 北京大学出版社, 1988: 1-235.

    Google Scholar

    [25] 卢晶. 胶东大尹格庄金矿成矿流体特征及成矿年代学研究[D]. 中国地质大学(北京)硕士学位论文, 2012.

    Google Scholar

    [26] 罗镇宽, 苗来成. 胶东招莱地区花岗岩和金矿床[M]. 北京: 冶金工业出版社, 2002: 1-143.

    Google Scholar

    [27] 吕承训. 胶东金矿区域构造蚀变岩带地质特征与流体成矿规律研究[D]. 中国地质大学(北京)硕士学位论文, 2012.

    Google Scholar

    [28] 吕古贤, 邓军, 郭涛, 等. 玲珑-焦家式金矿构造变形岩相形迹大比例尺填图与构造成矿研究[J]. 地球学报, 1998, 19(2): 177-186.

    Google Scholar

    [29] 吕古贤, 林文蔚, 罗元华, 等. 构造物理化学与金矿成矿预测[M]. 北京: 地质出版社, 1999.

    Google Scholar

    [30] 吕古贤, 武际春, 崔书学, 等. 胶东玲珑金矿田地质[M]. 北京: 科学出版社, 2013: 1-685.

    Google Scholar

    [31] 吕古贤, 张宝林, 胡宝群, 等. 构造物理化学的研究与进展[J/OL]. 地学前缘, 2021: 1-15. [2023-04-20]DOI: 10.13745/j.esf.sf.2021.11.36.

    Google Scholar

    [32] 宋明春, 李三忠, 伊丕厚, 等. 中国胶东焦家式金矿类型及其成矿理论[J]. 吉林大学学报(地球科学版), 2014, 44(1): 87-104.

    Google Scholar

    [33] 宋明春. 胶东金矿深部找矿主要成果和关键理论技术进展[J]. 地质通报, 2015, 34(9): 1758-1771.

    Google Scholar

    [34] 涂光炽, 构造与地球化学[J]. 大地构造与成矿, 1984, 8(1): 1-5.

    Google Scholar

    [35] 万天丰. 古构造应力场[M]. 北京: 地质出版社, 1988: 1-156.

    Google Scholar

    [36] 万天丰. 山东省构造演化与应力场研究[J]. 山东地质, 1992, 8(2): 70-101.

    Google Scholar

    [37] 魏俊浩, 刘丛强, 丁振举. 热液型金矿床围岩蚀变过程中元素迁移规律——以张家口地区东坪、后沟、水晶屯金矿为例[J]. 矿物学报, 2000, 20(2): 200-206.

    Google Scholar

    [38] 徐金方. 玲珑复式花岗岩基的构成及其形成时代[J]. 岩石学报, 1991, 7(2): 43-49.

    Google Scholar

    [39] 杨斌, 周鑫, 段磊, 等. 胶东大尹格庄金矿区构造演化与控矿作用[J]. 黄金, 2020, 41(9): 35-40.

    Google Scholar

    [40] 杨立强, 邓军, 王中亮, 等. 胶东中生代金成矿系统[J]. 岩石学报, 2014, 30(9): 2447-2467.

    Google Scholar

    [41] 袁月蕾, 吕古贤, 郭涛, 等. 大尹格庄金矿床构造蚀变带特征及地球化学分析[J], 矿物学报, 2013, 33(S2): 98-985.

    Google Scholar

    [42] 张炳林, 单伟, 李大鹏, 等. 胶东大尹格庄金矿床热液蚀变作用[J]. 岩石学报, 2017, 33(7): 2256-2272.

    Google Scholar

    [43] 张可清, 杨勇. 蚀变岩质量平衡计算方法介绍[J]. 地质科技情报, 2002, 21(3): 104-107.

    Google Scholar

    [44] 周国发. 玲珑金矿田构造蚀变岩带及找矿预测研究[D]. 中国地质大学(北京)博士学位论文, 2009.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(6)

Article Metrics

Article views(2706) PDF downloads(208) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint