| Citation: | YANG Xingke, HE Hujun, CHAO Huixia, ZHU Haolei, HAN Ke, WANG Beiying. 2023. Comparison of characteristics between magmatic core complex and metamorphic core complex and examples of ore control: Tectonic community and ore controlling model of Niushan-Fenghuangshan metamorphic core complex and North Niushan magmatic core complex in the South Qinling Mountains. Geological Bulletin of China, 42(4): 520-539. doi: 10.12097/j.issn.1671-2552.2023.04.003 | 
Taking the metamorphic core complex of Niushan-Fenghuangshan(NFMtCC)in the southern Qinling Mountains and the North Niushan magmatic core complex (NMgCC) as examples, this study compares the characteristics and ore-controlling effects of the two types of core complexes. The research method is to compare and analyze the structural community, metamorphic degree, magma emplacement and deformation era, structural hierarchy and evolution, and ore control characteristics of the nuclear complex, combined with ore control structure alteration lithofacies mapping and dating research. The results indicate that the two types of core complexes have similar structural styles, but there are significant differences in their tectonic communities and evolution. The core of Niushan-Fenghuangshan metamorphic core complex is the Neoproterozoic Wudang rock group and Yaolinghe rock group medium deep metamorphic rock, with Neoproterozoic quartz diorite and Caledonian pyroxene diabase strain, indicating that it was formed in Neoproterozoic or Caledonian. There are detachment faults and ductile shear zones between the core complex and the surrounding Sinian Devonian shallow metamorphic rock. The Meiziya Formation of the Silurian system is a combination of shallow metamorphic and strongly deformed rock slices, with three stages of newly formed foliation and replacement, including multi-level ductile shear, solid-state rheology, detachment thrust strike slip deformation. The core and periphery of the North Niushan magmatic core complex are shallow metamorphic rock, and four intrusive rocks of Neoproterozoic, early Paleozoic, Triassic and Jurassic are found in the core and periphery by mapping and testing. There are two phases of intrusive rock related to the magmatic core complex: Triassic-Early Jurassic monzonitic granite stock (180.2±3.6 Ma, 176.0±1.9 Ma) and Late Jurassic granite vein (156.5 Ma). This research has found that the magma emplacement, ductile shear deformation, and thermal metamorphism accompanied by the magma core complex, as well as the increase of metamorphic phenocrysts, the distribution of natural gold along the S2 plane, and the hydrothermal alteration of gold mineralization, are all concentrated in the Late Triassic-Jurassic, indicating the spatiotemporal correlation characteristics of the brittle ductile shear deformation, overpass type magma, thermal vertical accretion, and hydrothermal alteration of the magma core complex during the relatively new era of intracontinental orogeny, as well as the direction of deep exploration.
 
		                | [1] | Davis G H. Shear-zone model for the origin of metamorphic corecomplexes[J]. Geology, 1983, 11: 342-347. | 
| [2] | Han K, Yang X K, Chao H X, et al. U-Pb zircon and Re-Os molybdenite geochronology of the W-Mo mineralized region of South Qinling, China, and tectonic implications[J]. Acta Geologica Sinica, 2020, 95(2) : 500-516. | 
| [3] | Hu J M, Chen H, Qu H J, et al. Mesozoic deformation of the Dabashan in the southern Qinling orogen, central China[J]. Journal of Asian Earth Sciences, 2012, 47(S1) : 171-184. | 
| [4] | Lister G S, Davis G A. The origin of metamorphic core complexes and detachment faults formed during Tertiary continental extension in the northern Colorado River region, U.S. A[J]. Journal of Structural Geology, 1989, 12: 65-94. | 
| [5] | 陈虹, 胡健民, 武国利, 等. 南秦岭构造带中段晚中生代陆内变形特征与侧向挤出构造[J]. 吉林大学学报(地球科学版), 2014, (6) : 1906-1927. | 
| [6] | 崔盛芹. 论全球性中—新生代陆内造山作用与造山带[J]. 地学前缘, 1999, 6(4) : 283-293. doi: 10.3321/j.issn:1005-2321.1999.04.011 | 
| [7] | Davis G A, 郑亚东. 变质核杂岩的定义、类型及构造背景[J]. 地质通报, 2002, 21(4) : 185-192. doi: 10.3969/j.issn.1671-2552.2002.04.001 | 
| [8] | 董树文, 张岳桥, 李秋生, 等. 论大巴山陆内造山带[M]. 北京: 地质出版社, 2014: 1-347. | 
| [9] | 段少帅, 焦建刚, 罗德智, 等, 南秦岭石泉北部将军河地区中酸性岩脉锆石U-Pb年代学及其构造意义[J]. 地质学报, 2017, 91(4) : 748-761. doi: 10.3969/j.issn.0001-5717.2017.04.004 | 
| [10] | 冯明申, 杨建东. 安康地区北部韧性推覆构造基本特征及对金矿成矿控制作用[J]. 陕西地质, 1994, 12(1) : 17-26. | 
| [11] | 高雅宁. 南秦岭汉阴北部金矿田陆内造山期构造-岩浆-成矿规律及成矿模式研究[D]. 长安大学博士学位论文, 2017: 1-136. | 
| [12] | 郭华, 李明, 李守林, 等. 板内造山带主要构造特征研究——以燕山和大别山造山带为例[M]. 北京: 地质出版社, 2002. | 
| [13] | 韩珂, 杨兴科, 何虎军, 等. 南秦岭汉阴北部金矿田脆-韧性剪切带控矿构造特征及构造变形-成矿年代学研究[J]. 大地构造与成矿学, 2020, 44(5) : 801-818. | 
| [14] | 何昌成. 玲珑金矿田岩浆核杂岩隆起-拆离成矿构造解析与预测[D]. 中国地质大学(北京) 硕士学位论文, 2018. | 
| [15] | 胡健民, 孟庆任, 白武明, 等. 南秦岭构造带中—晚古生代伸展构造作用[J]. 地质通报, 2002, 21(2/3) : 471-477. | 
| [16] | 胡健民, 施炜, 渠洪杰, 等. 秦岭造山带大巴山弧形构造带中生代构造变形[J]. 地学前缘, 2009, 16(3) : 49-68. doi: 10.3321/j.issn:1005-2321.2009.03.003 | 
| [17] | 胡健民, 孟庆任, 陈虹, 等. 秦岭造山带内宁陕断裂带构造演化及其意义[J]. 岩石学报, 2011, 27(3) : 657-671. | 
| [18] | 李佐臣. 扬子地块西北缘后龙门山造山带(北段) 物质组成、构造特征及其形成演化[D]. 长安大学博士学位论文, 2009: 1-211. | 
| [19] | 梁文天. 秦岭造山带东西秦岭交接转换区陆内构造特征与演化过程[D]. 西北大学博士学位论文, 2009. | 
| [20] | 刘俊来, 崔迎春. 岩浆核杂岩及其成因[C]//吉林大学地球科学系. 中蒙中生代伸展构造现场研讨会论文摘要及野外地质考察路线指南. 2001: 233-234. | 
| [21] | 刘俊来, 崔迎春, 关会梅. 辽吉朝褶皱带古元古宙岩浆核杂岩及其大地构造意义[J]. 地质通报, 2002, 21(4) : 202-208. doi: 10.3969/j.issn.1671-2552.2002.04.004 | 
| [22] | 吕古贤, 霍庆龙, 袁月蕾, 等. 胶东金矿陆内构造岩浆隆起-拆离带蚀变成矿[J]. 矿物学报, 2015, (S1) : 1028. | 
| [23] | 吕古贤, 李洪奎, 丁正江, 等. 胶东地区"岩浆核杂岩"隆起-拆离带岩浆期后热液蚀变成矿[J]. 现代地质, 2016, 30(2) : 247-262. | 
| [24] | 万天丰. 中国大地构造学[M]. 北京: 地质出版社, 2011: 1-400. | 
| [25] | 巫建华, 郭国林, 刘帅, 等. 大地构造学基础与中国地质学概论[M]. 北京, 地质出版社, 2013: 1-389. | 
| [26] | 徐学义, 陈隽璐, 张二朋, 等. 秦岭及邻区地质图(1: 500 000) 说明书[M]. 北京: 地质出版社, 2015: 1-81. | 
| [27] | 徐学义, 夏林圻, 夏祖春, 等. 岚皋早古生代碱质煌斑杂岩地球化学特征及成因探讨[J]. 地球学报, 2001, 22(1) : 55-60. | 
| [28] | 许志琴, 卢一伦, 汤耀庆, 等. 东秦岭造山带的变形特征及构造演化[J]. 地质学报, 1986, 3(3) : 237-247. | 
| [29] | 颜丹平, 周美夫, 宋鸿林, 等. 华南在Rodina古陆中位置的讨论——扬子地块西缘变质-岩浆杂岩证据及其与Seychelles地块的对比. 地学前缘, 2002, 9(4) : 249-256. | 
| [30] | 杨经绥, 许志琴, 马昌前, 等. 复合造山作用和中国中央造山带的科学问题[J]. 中国地质, 2010, 37(1) : 1-11. | 
| [31] | 杨兴科, 韩珂, 吴旭, 等. 南秦岭陆内造山构造变形特征与演化: 石泉—汉阴北部一带晚印支—燕山期构造变形分析[J]. 地学前缘, 2016, 23(4) : 72-80. | 
| [32] | 杨兴科, 韩珂, 何虎军, 等. 南秦岭汉阴金矿田长沟金矿陆内造山期构造-蚀变岩相填图与找矿[J]. 地质通报, 2020, 39(11) : 11-23. | 
| [33] | 杨兴科, 晁会霞, 何虎军, 等. 南秦岭钨钼金矿陆内造山期立交桥构造-岩浆-流体物理化学叠加成矿[C]//中国地球物理学会等CGU会议论文集. 2021. | 
| [34] | 杨志华, 王北颖. 抽拉-逆冲岩片构造——秦岭造山带的新模式[J]. 地球科学, 1993, 18(5) : 565-575, 671. | 
| [35] | 杨志华, 郭俊峰, 苏生瑞, 等. 秦岭造山带基础地质研究的新进展[J]. 中国地质, 2002, 29(3) : 246-256. | 
| [36] | 杨志华, 苏生瑞, 李勇, 等. 从抽拉构造到陆内造山带和大陆动力学[C]// 中国地质学会. "九五"全国地质科技重要成果论文集. 2000: 69-73. | 
| [37] | 喻安光, 郭建强, 游再平, 等. 四川石棉草科穹状岩浆核杂岩构造特征[J]. 矿物岩石, 1998, 18(4) : 90-95. | 
| [38] | 喻安光. 四川石棉—冕宁地区之伸展构造[J]. 中国区域地质, 2000, 19(1) : 20-28. | 
| [39] | 袁月蕾. 胶东构造岩浆隆起-拆离带热液蚀变成矿与典型矿床研究[D]. 中国地质大学(北京) 博士学位论文, 2014. | 
| [40] | 张国伟, 张本仁, 袁学诚, 等. 秦岭造山带与大陆动力学[M]. 北京: 科学出版社, 2001: l-855. | 
| [41] | 张康. 南秦岭汉阴北部志留系金矿田构造控矿规律及找矿标志研究[D]. 长安大学硕士学位论文, 2012. | 
| ① | 郭安林, 张国伟, 等译, 张国伟校.构造地质学和大地构造学新航程[R].西北大学大陆动力学重点实验室.2003. | 
| ② | 郭安林, 张进江, 等译, 张国伟校.大地构造学研究的挑战与机遇——从地质时间到人类时间尺度地球系统与变形及其过程的关系[R].西北大学大陆动力学重点实验室.2018. | 
| ③ | 吴闻人, 王北颖, 冯明申, 等.陕西省南秦岭造山带中部韧性剪切带的形成、演化及其与金矿成矿关系研究[R].西安:陕西省地质矿产勘查开发局综合研究队.1991. | 
| ④ | 王北颖, 王向利, 白定邦, 等.1:万马池幅、汉王城幅、瓦房店幅区域地质图及说明书[R].陕西省地质调查院, 2001. | 
| ⑤ | 杨兴科, 何虎军, 张康, 等.陕西省安康市汉阴北部金矿田构造与快速找矿方法研究报告[R].长安大学, 2012. | 
| ⑥ | 杨兴科, 何虎军, 高雅宁, 等.陕西石泉-旬阳金矿整装勘查区重点工作区找矿预测研究报告[R].长安大学, 2015. | 
 
			            
			            
			            
			        Distribution location of structural units around the South Qinling belt(a) and Niushan-Fenghuangshan metamorphic core complex(NFMtCC) and North Niushan magmatic core complex(NMgCC)(b)
Structural outline of Niushan-Fenghuangshan metamorphic core complex(NFMtCC) and North Niushan magmatic core complex(NMgCC)in the South Qinling Mountains
Solid rheological folds and fold stacking patterns in the core and peripheral main interface of Niushan-Fenghuangshan metamorphic core complex and the upper strata
Deformation fabric(a-o), measured section and structural style of North Niushan magmatic core complex and northern brittle-ductile shear zone
Distribution of Niushan-Fenghuangshan metamorphic core complex and North Niushan magmatic core complex with brittle-ductile shear zone and gold deposits
Guanyinhe intrusive dyke and ore controlling tectonic model in Huanglong gold deposit, North Niushan magmatic core complex
Zircon CL image(a), U-Pb concordia(b) and age frequency(c) diagrams of granite in Liukeng ore section of North Niushan magmatic core complex
Zircon CL image(a), U-Pb concordia(b) and age frequency(c) diagrams of Guanyinhe granodiorite in Huanglong mining area of North Niushan magmatic core complex
Structural profile of the superimposition of Niushan-Fenghuangshan metamorphic core complex and North Niushan magmatic core complex
Structural evolution model of superimposed Niushan-Fenghuangshan metamorphic core complex and North Niushanbei magmatic core complex