2022 Vol. 41, No. 12
Article Contents

LI Jiqing, WANG Bingzhang, WANG Tao, WANG Ming, LI Qing, MA Yongcheng. Genesis of Late Ordovician granite porphyry at Heicigou gold deposit, East Kunlun: constraints from zircon U-Pb age, geochemistry and Sr-Nd-Pb-Hf isotopic systematics[J]. Geological Bulletin of China, 2022, 41(12): 2173-2185. doi: 10.12097/j.issn.1671-2552.2022.12.010
Citation: LI Jiqing, WANG Bingzhang, WANG Tao, WANG Ming, LI Qing, MA Yongcheng. Genesis of Late Ordovician granite porphyry at Heicigou gold deposit, East Kunlun: constraints from zircon U-Pb age, geochemistry and Sr-Nd-Pb-Hf isotopic systematics[J]. Geological Bulletin of China, 2022, 41(12): 2173-2185. doi: 10.12097/j.issn.1671-2552.2022.12.010

Genesis of Late Ordovician granite porphyry at Heicigou gold deposit, East Kunlun: constraints from zircon U-Pb age, geochemistry and Sr-Nd-Pb-Hf isotopic systematics

More Information
  • The Heicigou gold deposit is located in the southern segment of the East Kunlun Orogen.The graniteporphyry in the area which is parallel to the gold metallogenic belt along the NW trending structure, is a newly delineated felsic dike related to the gold mineralization in recent years.Based on LA-ICP-MS zircon U-Pb dating, Sr-Nd-Pb-Hf isotopic systematics, and whole-rock geochemistry, the formation age, petrogenesis, tectonic setting, and magma source of the granite porphyry are discussed in detail.The results show that the zircon U-Pb age of the granite porphyry is 445.8±2.4 Ma(MSWD=0.36), indicating an age of the Late Ordovician.The granite porphyry contains 75.17%~78.94% SiO2, 10.22%~12.8% Al2O3, 5.49%~7.07% K2O+Na2O, K2O/Na2O ranging from 0.01 to 0.03, 0.05%~0.07% MnO, 0.08%~0.25%MgO, 0.07%~0.08% P2O5, and 0.15%~0.18% TiO2, suggesting that the rock belongs to the low-K calc-alkaline rock series.The A/CNK and A/NK values are 0.92~0.99 and 1.1~1.14, respectively, indicating that the rock is metaluminuous.The ΣREE concentration ranges from 132.4×10-6 to 183.95×10-6, with the LREE/HREE ratios varying between 8.04 and 8.78.The primitive mantle-normalized trace element spidergrams are characterized by enrichment in Ba, Th, and Pb and depletion in Nb, Ta, and Ti, similar to I-type granites in volcanic arc settings.The granite porphyry exhibits high ISr(0.7133~0.7158), (207Pb/204Pb)i but low εNd(t)(-4.45~-5.15)and εHf(t)(-11.12~+0.13), similar to magmas derived from the lower crust.It is believed that the granite porphyry was formed in a continental margin arc setting due to the northward subduction of the Proto-Tethys Ocean in the Late Ordovician, and that the magma was originated from the partial melting of the lower crust.

  • 加载中
  • [1] 潘彤, 王秉璋, 李东生, 等. 青海东昆仑成矿环境成矿规律与找矿方向[M]. 北京: 地质出版社, 2016.

    Google Scholar

    [2] 李瑞保, 裴先治, 李佐臣, 等. 东昆仑南缘布青山构造混杂带得力斯坦南MOR型玄武岩地质、地球化学特征及岩石成因[J]. 地球科学, 2015, 40(7): 1148-1162.

    Google Scholar

    [3] 莫宣学, 罗照华, 邓晋福, 等. 东昆仑造山带花岗岩及地壳生长[J]. 高校地质学报, 2007, 13(3): 403-414. doi: 10.3969/j.issn.1006-7493.2007.03.010

    CrossRef Google Scholar

    [4] 陈加杰, 付乐兵, 魏俊浩, 等. 东昆仑沟里地区晚奥陶世花岗闪长岩地球化学特征及其对原特提斯洋演化的制约[J]. 地球科学, 2016, 41(11): 1863-1882.

    Google Scholar

    [5] 陈邦学, 徐胜利, 杨有生, 等. 东昆仑西段其木来克一带晚二叠世侵入岩的成因及其构造意义[J]. 地质通报, 2019, 38(6): 1040-1051.

    Google Scholar

    [6] 高晓峰, 校培喜, 谢从瑞, 等. 东昆仑阿牙克库木湖北巴什尔希花岗岩锆石LA-ICP-MS U-Pb定年及其地质意义[J]. 地质通报, 2010, 29(7): 1001-1008. doi: 10.3969/j.issn.1671-2552.2010.07.005

    CrossRef Google Scholar

    [7] 刘彬. 东昆仑跃进山早泥盆世侵入杂岩体岩石学、锆石U-Pb年代学及岩石成因[D]. 中国地质大学硕士学位论文, 2011.

    Google Scholar

    [8] Anderson T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1/2): 59-79.

    Google Scholar

    [9] Ludwig K R. User's manual for Isoplot 3.0: A geochronologicaltoolkit for Microsoft Excel[M]. Berkeley Geochronology CenterSpecial Publication, 2003: 1-20.

    Google Scholar

    [10] Middlemost E A K. Naming materials in the magma/igneous rock system [J]. Earth Science Reviews, 1994, 37(3/4): 215-224.

    Google Scholar

    [11] Irvine T N, Barager W R A. A guide to the chemical classification of the common volcanic rocks[J]. Canadian Journal of Earth Sciences, 1971, 8: 523-548. doi: 10.1139/e71-055

    CrossRef Google Scholar

    [12] Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989, 101(5): 635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    CrossRef Google Scholar

    [13] O'Connor J A. classification for quartz-rich igneous rock based on feldspar ratios[J]. US Geol Surv Prof Paper, 1965, 525: B79-B84.

    Google Scholar

    [14] Sun S S, McDonough W F. Chemical and isotopic systematic of oceanic basalts: Implications for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 1989, 42(1): 313-345.

    Google Scholar

    [15] 吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 49(16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002

    CrossRef Google Scholar

    [16] Slama J, Kosler J, Condon D J, et al. Plesovice zircon-A new natural reference material for U-Pb and Hf isotopic microanalysis[J]. Chemical Geology, 2008: 1-35.

    Google Scholar

    [17] 吴福元, 李献华, 郑永飞, 等. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 2007, 23(2): 185-220.

    Google Scholar

    [18] 祁生胜. 青海省东昆仑造山带火成岩岩石构造组合与构造演化[D]. 中国地质大学博士学位论文, 2015.

    Google Scholar

    [19] 张耀玲, 张绪教, 胡道功, 等. 东昆仑造山带纳赤台群流纹岩SHRIMP锆石U-Pb年龄[J]. 地质力学学报, 2010, 16(1): 21-27. doi: 10.3969/j.issn.1006-6616.2010.01.003

    CrossRef Google Scholar

    [20] 李献华, 李武显, 李正祥, 等. 再论南岭燕山早期花岗岩的成因类型与构造意义[J]. 科学通报, 2007, 52(9): 981-991. doi: 10.3321/j.issn:0023-074X.2007.09.001

    CrossRef Google Scholar

    [21] Collins W, Beams S, White A, et al. Nature and Origin of A-type Granites with Particular Reference to Southeastern Australia[J]. Contributions to Mineralogy and Petrology, 1982, 80(2): 189-200. doi: 10.1007/BF00374895

    CrossRef Google Scholar

    [22] Whalen J B, Currie K L, Chappell B W. A-type granites: geochemical characteristics, discriminatuon and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95: 407-419. doi: 10.1007/BF00402202

    CrossRef Google Scholar

    [23] Alther R, Holl A, Hegner E, et al. High-potassium, calc-alkaline Ⅰ-type plutonism in the European Variscides: Northern Vosges(France)and northern Schwarzwald(Germany)[J]. Lithos, 2000, 50(1): 51-73.

    Google Scholar

    [24] 彭勃, 李宝龙, 秦广洲, 等. 西藏拉萨地块盐湖石英闪长岩成因: 锆石SHRIMP U-Pb年代学、地球化学及Sr-Nb-Pb-Hf同位素的制约[J]. 地质学报, 2019, 93(3): 606-621.

    Google Scholar

    [25] Chappell B W, White A J R. Two contrasting granite types[J]. Pacific Geoglogy, 1974, 8: 173-174.

    Google Scholar

    [26] Beard J S, Lofgren G E. Dehydration melting and water saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3 and 6.9kb[J]. Journal of Petrology, 1991, 32: 365-401. doi: 10.1093/petrology/32.2.365

    CrossRef Google Scholar

    [27] Clemens J D. Stype granitic magmas petrogenetic issues, models and evidence[J]. Earth Science Reviews, 2003, 61(1/2): 1-18.

    Google Scholar

    [28] 张旗, 王元龙, 张福勤, 等. 埃达克岩与斑岩铜矿[J]. 华南地质与矿产, 2002, 3: 85-90. doi: 10.3969/j.issn.1007-3701.2002.03.012

    CrossRef Google Scholar

    [29] 孙立新, 任邦方, 赵凤清, 等. 内蒙古锡林浩特地块中元古代花岗片麻岩的锆石U-Pb年龄和Hf同位素特征[J]. 地质通报, 2013, 32(2/3): 327-340.

    Google Scholar

    [30] 李婷, 李猛, 胡朝斌, 等. 东昆仑祁漫塔格阿确墩地区侵入岩U-Pb年代学、地球化学及其地质意义[J]. 地球科学, 2018, 43(12): 4350-4363.

    Google Scholar

    [31] Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25: 956-983. doi: 10.1093/petrology/25.4.956

    CrossRef Google Scholar

    王秉璋, 王瑾, 叶占福, 等. 布喀达坂峰幅(J46C004001) 1∶25万区域地质调查. 2004.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(5)

Article Metrics

Article views(1224) PDF downloads(80) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint