2022 Vol. 41, No. 12
Article Contents

YE Fei, SHU Duoyou, PAN Wen, ZUO Yong, JIANG Tianrui, ZHOU Ning, QIN Zhigui, MENG Kunpeng, HE Yi. Uplifting and erosion process of Wuling Concave Field, Southeast margin Yangtze Platform since Cenozoic—evidence of fission track of clastic apatite[J]. Geological Bulletin of China, 2022, 41(12): 2158-2166. doi: 10.12097/j.issn.1671-2552.2022.12.008
Citation: YE Fei, SHU Duoyou, PAN Wen, ZUO Yong, JIANG Tianrui, ZHOU Ning, QIN Zhigui, MENG Kunpeng, HE Yi. Uplifting and erosion process of Wuling Concave Field, Southeast margin Yangtze Platform since Cenozoic—evidence of fission track of clastic apatite[J]. Geological Bulletin of China, 2022, 41(12): 2158-2166. doi: 10.12097/j.issn.1671-2552.2022.12.008

Uplifting and erosion process of Wuling Concave Field, Southeast margin Yangtze Platform since Cenozoic—evidence of fission track of clastic apatite

More Information
  • In order to reveal the thermal uplifting history of Southeast margin Yangtze Block since Cenozoic Era, in this paper, it selects Wuling Concave Field of Southeast margin Yangtze Platform as the study area, performs the dating of clastic apatite fission track and imitate the thermal evolution, and reveals the tectonic-thermal evolution of Wuling Concave Field at Southeast margin of Yangtze platform since Paleogene. The results show that the study area experienced two evolution stages. By the quantitative analysis, it can be known that uplifting at the study area since cretaceous period can be divided into two periods, Period Ⅰ started from 80 Ma in which the start of uplifting linked with Sichuan Movement, Period Ⅱ started from about 28 Ma in which the continuous uplifting linked with the impact between India Plate and Eurasian Plate at the Yarlung Zangbo River. For the first time, this research got the fission track data of clastic apatite in Wuling Concave Field of Southeast margin of Yangtze Platform, which revealed the tectonic-thermal evolution at Wuling Concave Field and covered the shortage of thermochronology in the study area. Actually, this research plays a significant role in revealing the tectonic-thermal evolution of Wuling Concave Field, even middle and upper Yangtze Region at Mesozoic and Cenozoic.

  • 加载中
  • [1] 廖震文, 王生伟, 孙晓明, 等. 黔东北地区MVT型铅锌矿床闪锌矿Rb-Sr定年及其地质意义[J]. 矿床地质, 2015, 34(4): 769-785.

    Google Scholar

    [2] 叶飞, 潘文, 李典, 等. 黔东北燕山期构造变形特征及对华南大塘坡式锰矿勘查的影响——以普觉锰矿犁式正断层为例[J]. 矿床地质, 2019, 38(6): 1391-1406.

    Google Scholar

    [3] 叶飞, 李江风, 舒多友, 等. 贵州梵净山世界自然遗产地重要地质遗迹特征、成因及演化研究[J]. 地球学报, 2021, 42(1): 99-110.

    Google Scholar

    [4] 谢小峰, 杨坤光, 周琦, 等. 犁式正断层特征及其在找矿预测中的作用: 以黔东松桃西溪堡大型锰矿床为例[J]. 地质科技情报, 2015, 34(6): 33-39.

    Google Scholar

    [5] 周琦, 杜远生, 袁良军, 等. 黔湘渝毗邻区南华纪武陵裂谷盆地结构及其对锰矿的控制作用[J]. 地球科学, 2016, 41(2): 177-188.

    Google Scholar

    [6] 牛志军, 邓新, 刘浩, 等. 扬子陆块南北缘新元古代火山-沉积岩系研究现状与问题[J]. 华南地质, 2022, 38(1): 27-45.

    Google Scholar

    [7] 罗开平, 刘光祥, 王津义. 黔中隆起金沙地区中新生代隆升剥蚀的裂变径迹分析[J]. 海相油气地质, 2019, 14(1): 61-64.

    Google Scholar

    [8] 周德全, 刘秀明. 贵州高原层状地貌与高原抬升[J]. 地球与环境, 2005, (2): 79-84 doi: 10.3969/j.issn.1672-9250.2005.02.013

    CrossRef Google Scholar

    [9] 秦守荣, 刘爱民. 论贵州喜山期的构造运动[J]. 贵州地质, 1998, (2): 105-114.

    Google Scholar

    [10] 林树基. 贵州晚新生代构造运动的主要特征[J]. 贵州地质, 1993, (1): 10-17.

    Google Scholar

    [11] 张君, 李长安, 孙习林. 乌江流域中—新生代以来构造运动的碎屑磷灰石裂变径迹证据[J]. 地质论评, 2013, 59(3): 537-543. doi: 10.3969/j.issn.0371-5736.2013.03.014

    CrossRef Google Scholar

    [12] 李亚男, 彭治超, 戴银月. 裂变径迹分析及其在地质问题中的应用[J]. 西安文理学院学报(自然科学版), 2018, 21(3): 117-121. doi: 10.3969/j.issn.1008-5564.2018.03.025

    CrossRef Google Scholar

    [13] 宋立军, 刘池阳, 袁炳强. 基于碎屑磷灰石裂变径迹热史判别碎屑岩形成时代的方法[J]. 地球科学, 2018, 43(S2): 214-225.

    Google Scholar

    [14] 方石, 刘招君, 黄湘通, 等. 大兴安岭东南坡新生代隆升及地貌演化的裂变径迹研究[J]. 吉林大学学报(地球科学版), 2008, (5): 771-776, 794.

    Google Scholar

    [15] Li E G, Ling S Z, Ling H, et al. Behavior of apatite in granitic melts derived from partial melting of muscovite in metasedimentary sources[J]. China Geology, 2021, 4(1): 44-55.

    Google Scholar

    [16] Xiao Y T, Shu C Y, Sheng B H. Tectonic-thermal history and hydrocarbon potential of the Pearl River Mouth Basin, northern South China Sea: Insights from borehole apatite fission-track thermochronology[J/OL]. China Geology, 2022, 1-14. doi: 10.31035/cg2022055.

    Google Scholar

    [17] 张君, 李长安, 孙习林. 乌江流域中—新生代以来构造运动的碎屑磷灰石裂变径迹证据[J]. 地质论评, 2013, 59(3): 537-543.

    Google Scholar

    [18] 兰天龙. 浅议黔东北地区铅锌矿地质特征与找矿方向[J]. 地质找矿论丛, 2013, 28(2): 216-223.

    Google Scholar

    [19] 赵爽, 潘文, 杨胜堂, 等. 湘西—黔东北地区下寒武统铅锌矿矿床地质特征及成因探讨[J]. 贵州地质, 2016, 33(4): 257-264.

    Google Scholar

    [20] 叶飞, 潘文, 左勇, 等. 扬子地台东南缘上奥陶统五峰组斑脱岩锆石U-Pb年龄及其地质意义[J]. 地质通报, 2019, 38(10): 1718-1725.

    Google Scholar

    [21] Van Den, Bellemans F, De Corte F, et al. Composition of SRM and CN U-doped glasses: Significance for their use as thermal neutron monitors in fission track dating[J]. Radiation Measurements, 1994, 24(2): 153-160.

    Google Scholar

    [22] Green P F. On the thermo-tectonic evolution of northern Eng-land: evidence from fission track analysis[J]. Gcology, 1986, (5): 493-506.

    Google Scholar

    [23] Gleadow A J W, Duddy I R, Green P F et al. Lovering. Confined fission track lengths in apatite: a diagnostic tool for thermal history analysis[J]. Contributions to Mineralogy and Petrology, 1986, 94(4): 405-415.

    Google Scholar

    [24] Hurford A J, Green P F. A users'guide to fission track dating calibration[J]. Earth and Planetary Science Letters, 1982, 59(2): 343-354.

    Google Scholar

    [25] 沈传波, 梅廉夫, 张士万, 等. 依连哈比尔尕山和博格达山中新生代隆升的时空分异: 裂变径迹热年代学的证据[J]. 矿物岩石, 2008, (2): 63-70.

    Google Scholar

    [26] Ketcham R A. Forward and inverse modeling of low-tem-perature thermochronometry data[J]. Reviews in Mineralogy and Geochemistry, 2005, 58(1): 275-314.

    Google Scholar

    [27] Donelick R A, Ketcham R A, Carlson W D. Variability of apatite fission-track annealing kinetics: Ⅱ. Crystallographic orientation effects[J]. American Mineralogist, 1999, 84(9): 1224-1234.

    Google Scholar

    [28] Shen C B, Mei L B, Min K, et al. Multi-chronometric dating of the Huarong granitoins from the middle Yangtze Craton: implications for the tectonic evolution of eastern China[J]. Journal of Asian Earth Sciences, 2012, 2: 73-87.

    Google Scholar

    [29] Flowers R M, Farley K A, Ketcham R A. A reporting protocol for thermochronologic modeling illustrated with data from the Grand Canyon[J]. Earth and Planetary Science Letters, 2015, 432: 425-435.

    Google Scholar

    [30] 张冰, 颜丹平, 宋鸿林, 等. 断展褶皱要素对隐伏滑脱层深度及几何样式的约束: 数学分析及其在重庆地区薄皮构造中的应用[J]. 现代地质, 2008, (5): 779-786.

    Google Scholar

    [31] 李春呈. 四川运动及其在中国之分布[J]. 地质论评, 1950, (Z2): 135-156.

    Google Scholar

    [32] Aitchison J C, Davis A M. When. did the India-Asia collision really happen?[J]. Gondwana Research, 2001, 4(4): 560-561.

    Google Scholar

    曾克峰, 刘超, 张晶, 等. 贵州思南乌江喀斯特国家地质公园规划文本. 中国地质大学, 2010.

    Google Scholar

    叶飞, 潘文, 占朋才, 等. 贵州1∶5万思南县幅等三幅区域地质调查报告. 2019.

    Google Scholar

    谯文浪, 马义波, 唐佐其, 等. 贵州1∶5万梵净山幅等四幅区域地质调查报告. 2013.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(2)

Article Metrics

Article views(1752) PDF downloads(100) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint