Citation: | ZHANG Zhihui, ZHANG Da, HU Bojie, JIA Hongxiang, JIA Ruya, GENG Lin. Sources of ore-forming materials and prospecting ideas for the Tiantangshan tin polymetallic deposit, Guangdong Province[J]. Geological Bulletin of China, 2022, 41(10): 1887-1898. doi: 10.12097/j.issn.1671-2552.2022.10.015 |
The Tiantangshan tin polymetallic deposit is located in the eastern part of the Nanling metallogenic belt, near the junction of the Heyuan deep fault zone and the Dadongshan-Liyuan-Luofu east-west deep fault zone, and the middle and southern margin of the Mesozoic Dachangsha volcanic rock basin.Based on the analysis of the ore-forming geological conditions of the deposit, this paper carried out related research on the sulfur and lead isotope compositions of the ore and discussed the source of ore-forming materials.The sulfur isotope analysis of ore shows that the δ34SΣS of the ore-forming hydrothermal fluid has two peaks, which are -0.5‰~0‰ and 5‰~6.5‰, respectively.According to the geological characteristics of the deposit and the sulfur isotopic composition of similar deposits, this paper believes that the initial sulfur source of the ore-forming hydrothermal fluid is mainly magmatic sulfur.During the mineralization process, the sulfur isotopic composition of the ore-forming hydrothermal fluid changed due to mixing with the shallow fluid.The lead isotope results of the ore show that the source of lead is related to the source area of the orogenic belt, which is mainly the lead from upper crust, and there may also be the participation of lead from mantle.Combining with the understanding of the large-scale mineralization of the Mesozoic in South China, basing on the exploration of the geological characteristics of the mining area, the evolution of metallogenic fluids and the source of metallogenic materials, this paper discussed the mineralization process of the deposit and put forward the ideas for prospecting, hoping to contribute to the prospecting and exploration work in the Tiantangshan area.
[1] | 王登红, 唐菊兴, 应立娟, 等. "五层楼+地下室"找矿模型的适用性及其对深部找矿的意义[J]. 吉林大学学报(地球科学版), 2010, 40(4): 733-738. |
[2] | 王登红, 李健康. 南岭成矿带深部探测的理论与实践[M]. 北京: 地质出版社, 2017: 7-13 |
[3] | 卫三元. 大长沙盆地火山岩岩石地球化学特征及成因研究[J]. 铀矿地质, 1999, (4): 18-25. |
[4] | 巫建华, 刘飞宇, 刘帅. 峡江-广丰和三南-寻乌火山岩带晚中生代粗面岩SHRIMP锆石U-Pb年龄[J]. 地质论评, 2011, 57(1): 125-132. |
[5] | 胡秋玲. 天堂山锡矿成矿地质条件分析及找矿前景评述[J]. 地球, 2015, (6): 73-73. |
[6] | 贾宏翔. 广东省龙川县天堂山锡多金属矿床地质地球化学特征和成因[D]. 中国地质大学(北京)博士学位论文, 2016. |
[7] | Jia H X, Pang Z S, Chen R Y, et al. Genesis and hydrothermal evolution of the Tiantangshan tin-polymetallic deposit, south-eastern Nanling Range, South China[J]. Geological Journal, 2019, 54: 3958-3979. doi: 10.1002/gj.3393 |
[8] | Jia R Y, Wang G C, Geng L, et al. Petrogenesis of the Early Cretaceous Tiantangshan A-Type Granite, Cathaysia Block, SE China: Implication for the Tin Mineralization[J]. Minerals, 2019, 9: 257. |
[9] | 张志辉, 贾宏翔, 胡擘捷, 等. 广东天堂山锡多金属矿床地质及硫同位素特征[J]. 有色金属(矿山部分), 2019, 71(6): 49-58. |
[10] | 韩吟文, 马振东, 张宏飞, 等. 地球化学[M]. 北京: 地质出版社, 2003. |
[11] | Ohmoto H. Systematics of Sulfur and Carbon Isotopes in Hydrothermal Ore Deposits[J]. Economic Geology, 1972, 67(5): 551-578. |
[12] | 李顺庭. 湖南瑶岗仙钨多金属矿床特征与成因[D]. 中国地质大学(北京)博士学位论文, 2011. |
[13] | 刘卫明, 钟盛文. 大吉山钨矿床成矿的新认识[J]. 矿产与地质, 1996, 10: 406-411. |
[14] | 丁悌平, 彭子成, 黎红. 南岭地区几个典型矿床的稳定同位素研究[M]. 北京: 科学技术出版社, 1988: 67-88. |
[15] | 陈毓川, 黄民智, 徐珏, 等. 大厂锡矿地质[M]. 北京: 地质出版社, 1993: 69-340. |
[16] | 韩发, 赵汝松, 沈建忠, 等. 大厂锡多金属矿床地质及成因[M]. 北京: 地质出版社, 1997: 65-157. |
[17] | 秦德先, 洪托, 田毓龙, 等. 广西大厂锡矿92号矿体矿床地质与技术经济[M]. 北京: 地质出版社, 2002. |
[18] | 梁婷, 王登红, 蔡明海. 广西大厂锡多金属矿床S、Pb同位素组成对成矿物质来源的示踪[J]. 地质学报, 2008, 82: 967-977. |
[19] | 沈渭洲. 稳定同位素地质[M]. 北京: 原子能出版社, 1987. |
[20] | Zartman R E, Doe B R. Plumbotectonics-the model[J]. Tectonophysics, 1981, 75(1): 135-162. |
[21] | 毛景文, 谢桂青, 李晓峰, 等. 华南地区中生代大规模成矿作用与岩石圈多阶段伸展[J]. 地学前缘, 2004, (1): 45-55. |
[22] | 毛景文, 谢桂青, 郭春丽, 等. 南岭地区大规模钨锡多金属成矿作用: 成矿时限及地球动力学背景[J]. 岩石学报, 2007, (10): 2329-2338. |
[23] | 舒良树, 周新民, 邓平, 等. 中国东南部中、新生代盆地特征与构造演化[J]. 地质通报, 2004, 23(2/3): 876-884. |
[24] | 舒良树, 王德滋. 北美西部与中国东南部盆岭构造对比研究[J]. 高校地质学报, 2006, (1): 1-13. |
[25] | Gilder S A, Gill J, Coe R S, et al. Isotopic and paleomagnetic constraints on the Mesozoic tectonic evolution of South China[J]. Journal of Geophysical Research Solid Earth, 1996, 101(B7): 16137-16154. |
[26] | Hong D, Xie X, Zhang J. Isotope Geochemistry of Granitoids in South China and Their Metallogeny[J]. Resource Geology, 2010, 48(4): 251-263. |
[27] | Li X H, Chung S L, Zhou H W, et al. Jurassic intraplate magmatism in southern Hunan-eastern Guangxi: 40Ar/39Ar dating, geochemistry, Sr-Nd isotopes and implications for the tectonic evolution of SE China[J]. Geological Society of London Special Publications, 2002, 226(1): 193-215. |
[28] | 李兆丽, 胡瑞忠, 彭建堂, 等. 湖南芙蓉锡矿田流体包裹体的He同位素组成及成矿流体来源示踪[J]. 地球科学—中国地质大学学报, 2006, (1): 129-135. |
[29] | 王登红, 唐菊兴, 应立娟, 等. "五层楼+地下室"找矿模型的适用性及其对深部找矿的意义[J]. 吉林大学学报(地球科学版), 2010, 40(4): 733-738. |
Regional geological map of the Tiantangshan ore district
Geological sketch map of the mining area in the Tiantangshan tin polymetallic deposit
Sectional view of exploration lines No.1 of Tiantangshan tin polymetallic deposit
Frequency histogram of sulfur isotope composition of ore in Tiantangshan tin polymetallic deposit
Frequency histogram of ore isotope composition of typical hydrothermal vein type tungsten-tin deposits in South China
Discrimination diagram of tectonic environment by lead isotopes