2022 Vol. 41, No. 10
Article Contents

MAO Xingqiang, WANG Ende, YANG Qun, ZHAO Xingdong. Genesis of Xinli gold deposit in Jiaodong Peninsula, Shandong Province[J]. Geological Bulletin of China, 2022, 41(10): 1855-1868. doi: 10.12097/j.issn.1671-2552.2022.10.013
Citation: MAO Xingqiang, WANG Ende, YANG Qun, ZHAO Xingdong. Genesis of Xinli gold deposit in Jiaodong Peninsula, Shandong Province[J]. Geological Bulletin of China, 2022, 41(10): 1855-1868. doi: 10.12097/j.issn.1671-2552.2022.10.013

Genesis of Xinli gold deposit in Jiaodong Peninsula, Shandong Province

More Information
  • The Xinli gold deposit in the Sanshandao-Cangshang fault zone in the northwest Jiaodong Peninsula is a typical altered-rock type gold deposit.This paper studies the geological characteristics and fluid inclusion characteristics of Xinli gold deposit, analyzes the ore-forming fluid characteristics of Xinli gold deposit, and defines the genesis of Xinli gold deposit.The hydrothermal mineralization period of Xinli gold deposit can be divided into Ⅰ beresitization stage, Ⅱ quartz-pyrite stage, Ⅲ quartz-polymetallic sulfide stage and Ⅳ quartz-calcite stage.The fluid inclusions in Xinli gold deposit can be divided into single-phase liquid inclusions(Ⅰ-l type), single-phase gas inclusions(Ⅰ-g type), two-phase liquid rich inclusions(Ⅱ-l type, V/V+L < 50%), two-phase gas rich inclusions(Ⅱ-g type, V/V+L>50%)and CO2-H2O three-phase inclusions(Ⅲ type, VCO2+LCO2+ LH2O).In stage I, type Ⅰ-l, Ⅰ-g, Ⅱ-l, Ⅱ-g and Ⅲ fluid inclusions are developed, with homogenization temperature ranging from 201℃ to 378℃, and the salinity ranging from 3.06%NaCl.eqv. to 13.83% NaCl.eqv.. In stage Ⅱ, type Ⅰ-l, Ⅱ-l, Ⅱ-g and Ⅲ fluid inclusions are developed, with homogenization temperature ranging from 144℃ to 355℃, and the salinity ranging from 2.07%NaCl.eqv. to 13.45% NaCl.eqv.; In stage Ⅲ, type Ⅰ-l, Ⅱ-l, Ⅱ-g and Ⅲ fluid inclusions are developed, with homogenization temperature ranging from 108℃ to 299℃, and the salinity ranging from 0.35%NaCl.eqv. to 11.61% NaCl.eqv.; In stage Ⅳ, type Ⅱ-l, Ⅱ-g and Ⅲ fluid inclusions are developed, with homogenization temperature ranging from 102℃ to 236℃, and the salinity ranging from 0.35%NaCl.eqv. to 10.49% NaCl.eqv.Laser Raman spectroscopy shows that the fluid inclusions are composed of CO2, H2O and a small amount of CH4.The ore-forming fluid is a medium-low temperature and low salinity NaCl-CO2-H2O±CH4 fluid system.In the stage Ⅰ of Xinli gold deposit, δ18Owater SMOW=4.86‰~6.04‰, δDSMOW=-72.49‰~-69.27‰, indicating that ore-forming fluids mainly come from magmatic water.The δ34SCDT values of pyrite range from 10.8‰ to 13.2‰, and the δ34SCDT values of galena is 7.7‰.The sulfur element of xinli gold deposit may be directly derived from Guojialing granite.With the decrease of ore-forming fluid temperature, the ore-forming fluid reacts with the surrounding rock and the immiscibility of the fluid leads to the phase separation of the fluid, which leads to the precipitation of gold.The genetic type is vein gold deposit related to magmatic hydrothermal solution.

  • 加载中
  • [1] Deng J, Liu X, Wang Q, et al. Origin of theJiaodong-type Xinli gold deposit, Jiaodong Peninsula, China: Constraints from fluid inclusion and C-D-O-S-Sr isotope compositions[J]. Ore Geology Reviews, 2015, 65: 674-686. doi: 10.1016/j.oregeorev.2014.04.018

    CrossRef Google Scholar

    [2] 宋明春, 李三忠, 伊丕厚, 等. 中国胶东焦家式金矿类型及其成矿理论[J]. 吉林大学学报(地球科学版), 2014, 44(1): 87-104.

    Google Scholar

    [3] 孙宗锋, 于海新, 郭天庆, 等. 莱州新立金矿床的发现及其地质特征[J]. 山东地质, 1999, (2): 34-39.

    Google Scholar

    [4] 邓军, 王庆飞, 杨立强, 等. 胶西北金矿集区成矿作用发生的地质背景[J]. 地学前缘, 2004, (4): 527-533. doi: 10.3321/j.issn:1005-2321.2004.04.019

    CrossRef Google Scholar

    [5] 郭彬, 刘自成, 李威, 等. 三山岛金矿床成矿地质特征与找矿预测[J]. 矿业工程, 2008, (4): 14-16. doi: 10.3969/j.issn.1671-8550.2008.04.006

    CrossRef Google Scholar

    [6] 赵冬冬, 金刚, 李海松, 等. 山东省莱州市三山岛金矿床地质特征及成因探讨[J]. 地质找矿论丛, 2013, 28(4): 546-551.

    Google Scholar

    [7] 翟明国, 杨进辉, 刘文军. 胶东大型黄金矿集区及大规模成矿作用[J]. 中国科学(D辑), 2001, (7): 545-552.

    Google Scholar

    [8] 杨林, 王庆飞, 刘学飞, 等. 胶东控矿断裂断层泥形成与演化: 以新立金矿床为例[J]. 大地构造与成矿学, 2014, 38(4): 908-918. doi: 10.3969/j.issn.1001-1552.2014.04.016

    CrossRef Google Scholar

    [9] 赵睿, 刘学飞, 潘瑞广, 等. 胶东新立构造蚀变岩型金矿床元素地球化学行为[J]. 岩石学报, 2015, 31(11): 3420-3440.

    Google Scholar

    [10] 智云宝, 孙海瑞, 李风华. 山东栖霞笏山金矿床成因-元素地球化学与流体包裹体证据[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1552-1569.

    Google Scholar

    [11] 邓军, 王庆飞, 杨立强, 等. 胶东西北部金热液成矿系统内部结构解析[J]. 地球科学, 2005, (1): 102-108.

    Google Scholar

    [12] 范宏瑞, 胡芳芳, 杨进辉, 等. 胶东中生代构造体制转折过程中流体演化和金的大规模成矿[J]. 岩石学报, 2005, (5): 1317-1328.

    Google Scholar

    [13] 毛景文, 谢桂青, 张作衡, 等. 中国北方中生代大规模成矿作用的期次及其地球动力学背景[J]. 岩石学报, 2005, 21(1): 171-190.

    Google Scholar

    [14] 宋明春, 崔书学, 周明岭, 等. 山东焦家矿区深部超大型金矿床及其对"焦家式"金矿的启示[J]. 地质学报, 2010, 84(9): 1349-1358.

    Google Scholar

    [15] 宋英昕, 宋明春, 焦秀美, 等. 胶东金矿集区深部找矿重要进展及特征[J]. 黄金科学技术, 2017, 25(3): 4-18.

    Google Scholar

    [16] Deng J, Yang L Q, Groves D I, et al. An integrated mineral system model for the gold deposits of the giantJiaodong province, eastern China[J]. Earth-Science Reviews, 2020, 208(2): 103274.

    Google Scholar

    [17] 林文蔚, 赵一鸣, 赵国红, 等. 胶东金矿铅同位素地质特征及成矿年代讨论[J]. 长春科技大学学报, 1999, (2): 116-121.

    Google Scholar

    [18] 张军进, 邹键, 林大伟, 等. 胶东金矿集中区金矿成矿年代学分析[J]. 硅谷, 2013, 6(16): 148, 162.

    Google Scholar

    [19] 李洪奎, 时文革, 李逸凡, 等. 山东胶东地区金矿成矿时代研究[J]. 黄金科学技术, 2013, 21(3): 1-9.

    Google Scholar

    [20] 宋雪龙, 李俊建, 李秀章, 等. 胶东金矿床成矿流体、稳定同位素及成矿时代研究进展[J]. 地质找矿论丛, 2014, 29(1): 13-19.

    Google Scholar

    [21] 张良. 胶西北金成矿系统热年代学[D]. 中国地质大学(北京)博士学位论文, 2016.

    Google Scholar

    [22] 杜泽忠, 程志中, 姚晓峰, 等. 胶东谢家沟金矿床蚀变钾长石40Ar-39Ar年龄及地质意义[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1570-1581.

    Google Scholar

    [23] Goldfarb R J, Groves D I, Gardoll S. Orogenic gold and geologic time: a global synthesis[J]. Ore Geology Reviews, 2001, 18(1/2): 1-75.

    Google Scholar

    [24] 朱日祥, 范宏瑞, 李建威, 等. 克拉通破坏型金矿床[J]. 中国科学: 地球科学, 2015, 45(8): 1153-1168+1-4.

    Google Scholar

    [25] Li S R, Santosh M. Metallogeny and craton destruction: records from the North China Craton[J]. Ore Geology Reviews. 2014, 56: 376-414.

    Google Scholar

    [26] Song M C, Li S Z, Santosh M, et al. Types, characteristics andmetallogenesis of gold deposits in the Jiaodong Peninsula, Eastern North China Craton[J]. Ore Geology Reviews, 2015, 65: 612-625.

    Google Scholar

    [27] 宋明春. 胶东金矿深部找矿主要成果和关键理论技术进展[J]. 地质通报, 2015, 34(9): 1758-1771.

    Google Scholar

    [28] Gong B, Zheng Y F, Chen R X. An online method combining a thermal conversion elemental analyzer with isotope ratio mass spectrometry for the determination of hydrogen isotope composition and water concentration in geological samples[J]. Rapid Communications in Mass Spectrometry, 2007, 21(8): 1386-1392.

    Google Scholar

    [29] Clayton R N, Mayeda T K. The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis[J]. Geochimica Et Cosmochimica Acta, 1963, 27(1): 43-52.

    Google Scholar

    [30] Studley S A, Ripley E M, Elswick E R, et al. Analysis of sulfides in whole rock matrices by elemental analyzer-continuous flow isotope ratio mass spectrometry[J]. Chemical Geology, 2002, 192(1): 141-148.

    Google Scholar

    [31] 卢焕章. 流体包裹体[M]. 北京: 科学出版社, 2004: 11-325.

    Google Scholar

    [32] Hall D L, Sterner S M, Bodnar R J. Freezing point depression of NaCl-H2O solution[J]. Economic Geology, 1988, 83(1): 197-202.

    Google Scholar

    [33] Roedder E. Fluid Inclusions. Reviews in Mineralogy[J]. Mineral. Soc. Amer., 1984: 12.

    Google Scholar

    [34] 郑永飞. 稳定同位素地球化学[M]. 北京: 科学出版社, 2000: 62-118.

    Google Scholar

    [35] Hollister L S, Burruss R C. Phase equilibria in fluid inclusions from the Khtada Lake metamorphic complex[J]. Geochim. cosmochim. acta, 1976, 40(2): 163-175.

    Google Scholar

    [36] Fan H R, Ming G Z, Xie Y H, et al. Ore-forming fluids associated with granite-hosted gold mineralization at the Sanshandao deposit, Jiaodong gold province, China[J]. Mineralium Deposita, 2003, 38(6): 739-750.

    Google Scholar

    [37] Yang L Q, Zhang L, Wang Y, et al. Thermochronologic constrains on the processes of formation and exhumation of the Xinli orogenic gold deposit, Jiaodong Peninsula, eastern China[J]. Ore Geology Reviews: Journal for Comprehensive Studies of Ore Genesis and Ore Exploration, 2017, 81(Pt. 1): 140-153.

    Google Scholar

    [38] 陈衍景, 倪培, 范宏瑞, 等. 不同类型热液金矿系统的流体包裹体特征[J]. 岩石学报, 2007, 23(9): 2085-2108.

    Google Scholar

    [39] Chai P, Sun J G, Hou Z Q, et al. Geological, fluid inclusion, H-O-S-Pb isotope, and Ar-Ar geochronology constraints on the genesis of the Nancha gold deposit, southern Jilin Province, northeast China[J]. Ore Geology Reviews, 2016, 72: 1053-1071.

    Google Scholar

    [40] Taylor H P. The Application of Oxygen and Hydrogen Isotope Studies to Problems of Hydrothermal Alteration and Ore Deposition[J]. Economic Geology, 1974, 69(6): 843-883.

    Google Scholar

    [41] 黄德业. 胶东金矿成矿系列硫同位素研究[J]. 矿床地质, 1994, (1): 75-87.

    Google Scholar

    [42] 李治平. 胶东乳山金矿床成因[J]. 矿床地质, 1992, (2): 165-178.

    Google Scholar

    [43] 杨敏之. 金矿床围岩蚀变带地球化学: 以胶东金矿床为例[M]. 北京: 地质出版社, 1998: 100-105.

    Google Scholar

    [44] Mao J W, Wang Y T, Li H M, et al. The relationship of mantle-derived fluids to gold metallogenesis in the Jiaodong Peninsula: Evidence from D-O-C-S isotope systematics[J]. Ore Geology Reviews, 2008, 33(3/4): 361-381.

    Google Scholar

    [45] 侯建华, 任天龙, 王来明, 等. 胶东地区晚侏罗世玲珑期花岗岩[J]. 山东国土资源, 2021, 37(9): 1-11.

    Google Scholar

    [46] 蔡亚春. 胶东地区白垩纪中-基性脉岩岩浆作用与典型金矿床研究[D]. 中国科学院大学博士后论文, 2014.

    Google Scholar

    [47] 常裕林, 郑小礼, 王晖. 胶东西北部玲珑、郭家岭超单元花岗岩成因探讨[J]. 地质找矿论丛, 2006, (S1): 90-94.

    Google Scholar

    [48] 姜晓辉, 范宏瑞, 胡芳芳, 等. 胶东三山岛金矿中深部成矿流体对比及矿床成因[J]. 岩石学报, 2011, 27(5): 1327-1340.

    Google Scholar

    [49] Li R H, Chen B H, Goldfarb R J, et al. A comparison of Jiaojia- and Linglong-type gold deposit ore-forming fluids: Do they differ?[J]. Ore Geology Reviews: Journal for Comprehensive Studies of Ore Genesis and Ore Exploration, 2017, 88: 511-533.

    Google Scholar

    [50] Phillips G N, Evans K A. Role of CO2 in the formation of gold deposits[J]. Nature, 2004, 429(6994): 860-863.

    Google Scholar

    [51] Kerrich R, Goldfarb R, Groves D, et al. The characteristics, origins, and geodynamic settings of supergiant gold metallogenic provinces[J]. Science in China Series D, 2000, (43): 1-68.

    Google Scholar

    [52] Wen B J, Fan H R, Hu F F, et al. Fluid evolution and ore genesis of the giant Sanshandao gold deposit, Jiaodong gold province, China: Constrains from geology, fluid inclusions and H-O-S-He-Ar isotopic compositions[J]. Journal of Geochemical Exploration, 2016, 171: 96-112.

    Google Scholar

    [53] 陈阳阳. 山东焦家金矿床地球化学特征及矿床成因探讨[D]. 长安大学硕士学位论文, 2017.

    Google Scholar

    刘日富, 许延波, 沈少莹, 等. 山东省莱州市新立村矿区深部及外围金矿勘探报告. 山东黄金地质矿产勘查有限公司, 2015.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(4)

Article Metrics

Article views(2801) PDF downloads(130) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint