2022 Vol. 41, No. 10
Article Contents

WANG Fengxiang, LI Xiaoming, LUAN Zhuoran, ZHANG Weibo, ZHANG Wanyi. Global PGEs resource distribution, supply and demand and consumption trends[J]. Geological Bulletin of China, 2022, 41(10): 1829-1846. doi: 10.12097/j.issn.1671-2552.2022.10.011
Citation: WANG Fengxiang, LI Xiaoming, LUAN Zhuoran, ZHANG Weibo, ZHANG Wanyi. Global PGEs resource distribution, supply and demand and consumption trends[J]. Geological Bulletin of China, 2022, 41(10): 1829-1846. doi: 10.12097/j.issn.1671-2552.2022.10.011

Global PGEs resource distribution, supply and demand and consumption trends

More Information
  • The demand for PGEs mineral resources in China shows an increasing trend, and the external dependence is as high as 98%, which is a huge supply risk.This paper summarizes geological environment, distribution, and genetic type of the world-class PGEs deposits, and we also count supply and demand date of PGEs in China and the world in recent ten years(2011-2019), such as the exploration, consumption and the industrial chain.And then, we forecast the PGEs consumption, supply patterns and trends of China in next few years, and we also offer reasonable suggestions.Research shows that: ① Global PGEs reserve is scarce, but the distribution is more concentrated, mainly distributed in South Africa, Zimbabwe, Russia and North America.China's proved PGEs resources accounted for < 1% of the world's resource, therefore external dependence is very high; ② the genetic types of the PGEs deposit is various, but the magmatic PGEs deposits, especially outputed in mafic-ultramafic volcanic rocks, is the most important, with 10% large-superlarge deposits accounting for 85% of the world's PGEs resources; ③ The world's and China's PGEs exploration is at low ebb, and the increasing of PGEs resources and supply is not obvious.Especially, most of the world-renowned mining companies are mainly controlled by European and American, South African and Russian mining oligarchs, and China's large PGEs mining are relatively weak in international competitiveness; ④ China has established a relatively complete PGEs industrial chain, and the demand for PGEs in China in the next ten years may be as high as 160~185 t, with an average annual growth rate of 2.67%.Therefore, it is imperative to establish strategic reserve, stabilize global supply and strengthen recycling.

  • 加载中
  • [1] 余韵, 薛迎喜, 张福良. 国外关键矿产管理策略与借鉴[J]. 地质战略研究, 2019, 21(3): 1-19.

    Google Scholar

    [2] 侯增谦, 陈骏, 翟明国. 战略性关键矿产研究现状与科学前沿[J]. 科学通报, 2020, 33(65): 3651-3652.

    Google Scholar

    [3] 王焰, 钟宏, 曹勇华, 等. 中国铂族元素、钴和铬主要矿床类型的分布特征及成矿机制[J]. 科学通报, 2020, 33(65): 3825-3838.

    Google Scholar

    [4] Cabri L J. The geology, geochemistry, mineralogy and mineral beneficiation of platinum-group elements: Montreal, Quebec, Canada. Canadian Institute of Mining, Metallurgy and Petroleum Special Volume, 2002, 54: 13-130.

    Google Scholar

    [5] Frost D J, Mc Cammon C A. The redox state of earth's Mantle[J]. Annual Review of Earth and Planetary Sciences, 2008, 36: 389-420. doi: 10.1146/annurev.earth.36.031207.124322

    CrossRef Google Scholar

    [6] Naldrett A J, Hoffman E L, Green A H. The composition of Ni-sulfide ores, with particular reference to their content of PGE and Au[J]. Canadian Mineralogist, 1979, 17(2): 403-415.

    Google Scholar

    [7] Barnes S J, Naldrett A J, Gorton M P. The origin of the fractionation of platinum-group elements in terrestrial magmas[J]. Chemical Geology, 1985, 53: 303-323. doi: 10.1016/0009-2541(85)90076-2

    CrossRef Google Scholar

    [8] Peregoedova A, Barnes S J, Baker D R. The formation of Pt-Ir alloys and Cu-Pd-rich sulfide melts by partial desulfuration of Fe-Ni-Cu sulfides: results of experiments and implications for natural systems[J]. Chemical Geology, 2004, 208(1/4): 247-264.

    Google Scholar

    [9] Ambre L, Shirey S B, Lorand J P. Residual platinum-group minerals from highly depleted harzburgites of the Lherz massif(France)and their role in HSE fractionation of the Mantle[J]. Geochimicaet Cosmochimica Acta, 2007, 71(12): 3082-3097. doi: 10.1016/j.gca.2007.04.011

    CrossRef Google Scholar

    [10] Coffin M F, Eldholm O. Large igneous provinces—Crustal structure, dimensions, and external consequences[J]. Reviews in Geophysics, 1994, 32(1): 1-36. doi: 10.1029/93RG02508

    CrossRef Google Scholar

    [11] Schulz K J, De Young J H, Seal R R, et al. Critical mineral resources of the United States: economic and environmental geology and prospects for future supply: Platinum-Group Elements[M]. U.S. Department of the Interior and U.S. Geological Survey, 2018: 1-89.

    Google Scholar

    [12] Scoates J S, Friedman R M. Precise age of the platiniferous Merensky Reef, Bushveld Complex, South Africa, by the U-Pb zircon chemical abrasion ID-TIMS technique[J]. Economic Geology, 2008, 103: 465-471. doi: 10.2113/gsecongeo.103.3.465

    CrossRef Google Scholar

    [13] Malitch K N, Badanina I Y, Belousova E A, et al. Results of U-Pb dating of zircon and baddeleyite from the Norilsk-1 ultramafic-mafic intrusion(Russia)[J]. Russian Geology and Geophysics, 2012, 53(2): 123-130. doi: 10.1016/j.rgg.2011.12.010

    CrossRef Google Scholar

    [14] Oberthür T, Davis D W, Blenkinsop T G, et al. Precise U-Pb mineral ages, Rb-Sr and Sm-Nd systematics for the Great Dyke, Zimbabwe constraints on Late Archean events in the Zimbabwe craton and Limpopo belt[J]. Precambrian Research, 2002, 113(3/4): 293-305.

    Google Scholar

    [15] Premo W R, Helz R T, Zientek M L, et al. U-Pb and Sm-Nd ages for the Stillwater complex and its associated sills and dikes, Beartooth Mountains, Montana—Identification of a parent magma?[J]. Geology, 1990, 18(11): 1065-1068. doi: 10.1130/0091-7613(1990)018<1065:UPASNA>2.3.CO;2

    CrossRef Google Scholar

    [16] Hoaglund S A. U-Pb geochronology of the Duluth Complex and related hypabyssal intrusions—Investigating the emplacement history of a large multiphase intrusive complex related to the 1.1 Ga midcontinent rift[M]. Minneapolis, Minn., University of Minnesota M. S, 2010: 112.

    Google Scholar

    [17] Nitkina E A. U-Pb zircon dating of rocks of the platiniferous Fedorova-Pana layered massif, Kola Peninsula[J]. Doklady Earth Sciences, 2006, 408(1): 551-554. doi: 10.1134/S1028334X06040106

    CrossRef Google Scholar

    [18] Bailly L, Augé T, Cocherie A, et al. New data on the age of the Burakovsky layered intrusion, Karelia[J]. Doklady Earth Sciences, 2009, 426(1): 534-538. doi: 10.1134/S1028334X09040059

    CrossRef Google Scholar

    [19] Mortensen J K, Hulbert L J. A U-Pb zircon age for a Maple Creek gabbro Sill, Tatamagouche area, southwest Yukon Territory[J]. Geological Survey of Canada Paper, 1992, 2: 175-179.

    Google Scholar

    [20] Corfu F, Lightfoot P C. U-Pb geochronology of the sublayer environment, Sudbury igneous complex, Ontario[J]. Economic Geology, 1996, 91: 1263-1269. doi: 10.2113/gsecongeo.91.7.1263

    CrossRef Google Scholar

    [21] Hamilton M A, Brooks C K. A precise U-Pb zircon age for the Skaergaard intrusion—magmatic cooling history refinement and Paleogene igneous correlations, East Greenland[J]. American Geophysical Union, 2004, 32: 1-100.

    Google Scholar

    [22] Maier W D, Barnes S J, Gartz V, et al. Pt-Pd reefs in magnetitites of the Stella layered intrusion, South Africa—A world of new exploration opportunities for platinum-group elements[J]. Geology, 2003, 31(10): 885-888. doi: 10.1130/G19746.1

    CrossRef Google Scholar

    [23] Coffin M F, Eldholm O. Large igneous provinces—Crustal structure, dimensions, and external consequences[J]. Reviews in Geophysics, 1994, 32(1): 1-36. doi: 10.1029/93RG02508

    CrossRef Google Scholar

    [24] Ripley E M, Lightfoot P C, Li C S, et al. Sulfur isotopic studies of continental flood basalts in the Noril ' sk region: Implications for the association between lavas and ore-bearing intrusions[J]. Geochimicaet Cosmochitnica Acta, 2003, 67(15): 2805- 2817. doi: 10.1016/S0016-7037(03)00102-9

    CrossRef Google Scholar

    [25] 胡素芳, 钟宏, 刘秉光, 等. 攀西地区红格层状岩体的地球化学特征[J]. 地球化学, 2001, 30(2): 131-139.

    Google Scholar

    [26] 汤中立, 李文渊. 金川铜镍硫化物(含铂)矿床成矿模式及地质对比[M]. 北京: 地质出版社, 1995: 14-209.

    Google Scholar

    [27] 秦克章, 汪东波, 王之田, 等. 中国东部铜矿床类型、成矿环境、成矿集中区与成矿系统[J]. 矿床地质, 1990, 18(4): 359-371. doi: 10.16111/j.0258-7106.1999.04.010

    CrossRef Google Scholar

    [28] 王玉往, 王京彬, 王莉娟, 等. 新疆哈密黄山地区铜镍硫化物矿床的稀土元素特征及意义[J]. 岩石学报, 2004, 20(4): 935-948.

    Google Scholar

    [29] 孙赫, 秦克章, 李金祥, 等. 东天山图拉尔根铜镍钻硫化物矿床岩相、岩石地球化学特征及其形成的构造背景[J]. 中国地质, 2006, 33(3): 157-168.

    Google Scholar

    [30] 王京彬, 王玉往, 何志军. 东天山大地构造演化的成矿示踪[J]. 中国地质, 2006, 33(3): 461-469. doi: 10.3969/j.issn.1000-3657.2006.03.002

    CrossRef Google Scholar

    [31] Barnes S J, Lightfoot P. The formation of magmatic Ni-Cu-PGE sulide deposits[J]. Economic Geology, 2005, 190: 135-154.

    Google Scholar

    [32] 唐冬梅, 秦克章, 刘秉光, 等. 铂族元素矿床的主要类型、成矿作用及研究展望[J]. 岩石学报, 2008, 24(3): 569-588.

    Google Scholar

    [33] Armitage P E B, McDonald I. Platinurn-group element mineralization in the Platreef and calcsilicate footwall at Sandsloot, Potgietersrus District, South Africa[J]. Trans. Inst. Min. Metall., 2002, 111: 36-45.

    Google Scholar

    [34] Maier W D, Barnes S J, Ashwal L D, et al. A reconnaissance study on the magmatic Cu-Ni-PGE sulphide potential of the Tete Complex, Mozambique[J]. South African Journal of Geology, 2001, 104(4): 355-364.

    Google Scholar

    [35] Zientek M L, Cooper R W, Corson S R, et al. Platinum-group element mineralization in the Still-water Complex, Montana[C]//Cabri L J. The geology, geochemistry, mineralogy and mineral beneficiation of platinum-group elements, Montreal, Quebec, Canada. Economic Geology and the Bulletin of the Society of Economic Geologists, 2002, 54: 459-481.

    Google Scholar

    [36] Penberthy C J, Merkle R K W. Lateral variations in the platinum-group element content and mineralogy of the UG2 chromitite layer, Bushveld Complex[J]. South African Journal of Geology, 1999, 102(3): 240-250.

    Google Scholar

    [37] Olivo R G, Theyer P. Platinum-group minerals from the McBratney PGE-Au prospect in the Flin Flon greenstone belt, Manitoba, Canada[J]. Canadian Mineralogist, 2004, 42: 667 -681.

    Google Scholar

    [38] Tarkian M, Koopmann G. Platinum-group minerals in the Santo Tomas Ⅱ(Philex)porphyry copper-gold deposit, Luzon Island, Philippines[J]. Mineralium Deposita, 1995, 30(1): 39-47.

    Google Scholar

    [39] Pan Y M, Xie Q L. Extreme fractionation of platinum group elements in volcanogenic massive sulfide deposits[J]. Economic Geology, 2001, 96: 645-651.

    Google Scholar

    [40] Distler V V, Yudovskaya M A, Mitrofanov G L, et al. Geology, composition, and genesis of the Sukhoi Log noble metals deposit, Russia[J]. Ore Geology Reviews, 2004, 24: 7-44

    Google Scholar

    [41] Shcheka G G, Vrzhosek A A. Associations of platinum group element minerals from the zolotaya gold placer, Primorye, Russian Fareast[J]. Canadian Mineralogist, 2004, 42: 583-599.

    Google Scholar

    [42] 裴荣富, 梅燕雄, 瞿泓滢, 等. 大型-超大型矿床找矿新认知[J]. 矿床地质, 2013, 32(4): 661-664.

    Google Scholar

    [43] 王丰翔, 裴荣富, 江思宏, 等. 碱性岩相关铜-金(钼)矿床的研究进展[J]. 地质通报, 2017, 36(01): 140-153.

    Google Scholar

    [44] 张若然, 陈其慎, 柳群义, 等. 全球主要铂族金属需求预测及供需形势分析[J]. 资源科学, 2015, 37(5): 1018-1029.

    Google Scholar

    [45] 中华人民共和国国土资源部. 中国矿产资源报告[M]. 北京: 地震出版社, 2019: 1-90.

    Google Scholar

    [46] 汤中立. 中国镁铁、超镁铁岩浆矿床成矿系列的聚集与演化[J]. 地学前缘, 2004, 11(1): 113-119.

    Google Scholar

    [47] Zhou M F, Yang Z X, Song X Y, et al. Magmatic Ni-Cu-(PGE)sulphide deposits in China. The geology, geochemistry, mineralogy and mineral beneficiation of platinum group elements[J]. Can. Inst. Min. Metall. Spec., 2002, 54: 619-636.

    Google Scholar

    [48] 王登红, 陈毓川, 徐志刚, 等. 新疆北部Cu-Ni-(PGE)硫化物矿床成矿系列探讨[J]. 矿床地质, 2000, 19(2): 147-155.

    Google Scholar

    [49] 汤中立, 钱壮志, 姜常义, 等. 中国超大型镍铜铂岩浆硫化物矿床预测[M]. 北京: 地质出版社, 2006: 1-50.

    Google Scholar

    [50] 冯延清. 新疆喀拉通克晚古生代镁铁质岩体铜镍成矿作用与地球动力学背景[D]. 长安大学博士学位论文, 2018.

    Google Scholar

    [51] 来雅文. 岩浆硫化铜镍型铂(铂族)矿床类型, 分布与峨嵋玄武岩铂钯赋存状态研究[D]. 吉林大学博士学位论文. 2006, 1-200.

    Google Scholar

    [52] Zhong Y T, He B, Mundil R Y. CA-TIMS zircon U-Pb dating of felsic ignimbrite from the Binchuan section: Implications for the termination age of Emeishan large igneous province[J]. Lithos, 2014, 204: 14-19.

    Google Scholar

    [53] 李光辉, 孙景贵, 黄永卫, 等. 黑龙江鸡东五星铂钯矿床含矿岩体的锆石U-Pb年龄及其他地意义[J]. 世界地质, 2010, 29(1): 28-32.

    Google Scholar

    [54] Zhong H, Prevec S A, Wilson A H. Trace-element and Sr-Nd isotopic geochemistry of the PGE-bearing Xinjie layered intrusion in SW China[J]. Chemical Geology, 2004, 203: 237-252.

    Google Scholar

    [55] 王登红, 应立娟, 王成辉, 等. 中国贵金属矿床的基本成矿规律与找矿方向[J]. 地学前缘, 2007, 14(5): 71-81.

    Google Scholar

    [56] 耿林, 翟裕生, 彭润民. 中国铂族元素矿床特征及资源潜力分析[J]. 地质与勘探, 2007, 43(1): 1-7.

    Google Scholar

    [57] 王登红, 应汉龙, 骆耀南, 等. 试论与布什维尔德杂岩体有关的铂族元素-铬铁矿矿床成矿系列及其对中国西南部的意义[J]. 地质与资源, 2002, 11(4): 243-249.

    Google Scholar

    [58] 王登红. 中国西南铂族元素矿床地质、地球化学与找矿[M]. 地质出版社: 北京, 2007: 1-200.

    Google Scholar

    [59] 李鹏远, 周平, 齐亚彬, 等. 中国主要铂族金属供需预测及对策建议[J]. 地质通报, 2017, 36(4): 676-683.

    Google Scholar

    美国内政部(USDI). 《美国关键矿产目录清单(2018)》. 2018.

    Google Scholar

    欧盟委员会(European Commission). 《2017年关键原材料目录清单研究》. 2017.

    Google Scholar

    欧盟委员会(European Commission). 《2020年关键原材料目录清单研究》. 2020.

    Google Scholar

    U.S. Geological Survey(USGS). Minerals Information. 2016-2019. [EB/OL](2019-12)[2020-12] http://minerals.usgs.Gov/minerals/pubs/commodity/.

    Google Scholar

    Geological Survey of Finland. Platinum-group elements in Finland: Geological Survey of Finland database, 2011.

    Google Scholar

    Baker C L, Kelly R I, Parker J. R, et al. Summary of field work and other activities 2003, with a section on regional geology of the Lac des Iles area, by Stone, D., Lavigne, M.J., Schnieders, B., Scott, J., and Wagner, D. : Ontario Geological Survey Open File Report 6120, 15-1 to 15-25.

    Google Scholar

    S & P global market intelligence, Commodity Detail(SPGMI)/PLATINUM and Palladium, 2020. https://platform.mi.spglobal.cn/web.

    Google Scholar

    汽车产业中长期发展规划. 工信部联装[2017]53号. 2017.

    Google Scholar

    新能源汽车产业发展规划(2021—2035年)(征求意见稿). 工业和信息化部装备工业司. 2019.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(7)

Article Metrics

Article views(6285) PDF downloads(442) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint