2022 Vol. 41, No. 9
Article Contents

JI Bo, JIAO Yangquan, LIU Yang. Petrogenesis and provenance of the quartz sandstone from the bottom of Lower Jurassic Fuxian Formation, northeastern Ordos Basin[J]. Geological Bulletin of China, 2022, 41(9): 1601-1612. doi: 10.12097/j.issn.1671-2552.2022.09.009
Citation: JI Bo, JIAO Yangquan, LIU Yang. Petrogenesis and provenance of the quartz sandstone from the bottom of Lower Jurassic Fuxian Formation, northeastern Ordos Basin[J]. Geological Bulletin of China, 2022, 41(9): 1601-1612. doi: 10.12097/j.issn.1671-2552.2022.09.009

Petrogenesis and provenance of the quartz sandstone from the bottom of Lower Jurassic Fuxian Formation, northeastern Ordos Basin

  • Abstract: A suite of quartz sandstones was deposited in the bottom of the Fuxian Formation in the northeast of Ordos Basin. There are different interpretations about its petrogenesis. The research of sedimentology, petrology and rock geochemistry was carried out on the quartz sandstones to reveal their petrogenesis and provenance. The study show that the quartz sandstones has the characteristic of "three-layer structure" as the Gilbert-type delta which belongs to the lake-fan delta facies. The quartz sandstones are mainly consisted of quartz and kaolinite. The Quartz is mostly single-crystal quartz, the kaolinite appeared to be fragmentary and pliciform, they may show characteristic of the provenance. The results of petrology and geochemistry indicate that the uplifted terrain in the interior of the basin provided large amount of sandstones which rich in quartz as the provenance. Combined with the regional geologic data, the survey results conclude that the arkose on the top of Yanchang Formation had formed the quartz-rich and kaolinite-rich provenance by alteration in Indochina period, and it's the key to form the quartz sandstones in Fuxian formation. This type of quartz sandstone relate with strong weathering on the unconformity, and it closely associated with kaolin deposit. So it may be a new evidence to prove the exist of unconformity.

  • 加载中
  • [1] 杨俊杰.鄂尔多斯盆地构造演化与油气分布规律[M]. 北京:石油工业出版社, 2002.

    Google Scholar

    [2] 赵俊兴, 陈洪德, 张锦泉, 等. 鄂尔多斯盆地下侏罗统富县组沉积体系及古地理[J]. 沉积与特提斯地质, 1999, 19(5): 40-46. doi: 10.3969/j.issn.1009-3850.1999.05.005

    CrossRef Google Scholar

    [3] 李凤杰, 王多云, 刘自亮, 等. 鄂尔多斯盆地华池地区中侏罗统延安组延9油层组河流沉积及演化[J]. 古地理学报, 2009, 11(3): 275-283.

    Google Scholar

    [4] 唐波, 陈义才, 林杭杰, 等. 定边地区富县组储层砂岩成岩作用及孔隙演化特征[J]. 湖北文理学院学报, 2011, 32(5): 37-41. doi: 10.3969/j.issn.1009-2854.2011.05.009

    CrossRef Google Scholar

    [5] 陈俊丽, 唐波, 古伟, 等. 定边地区富县组油气成藏条件研究[J]. 湖北文理学院学报, 2011, 32(11): 60-63. doi: 10.3969/j.issn.1009-2854.2011.11.015

    CrossRef Google Scholar

    [6] 张云霞, 陈纯芳, 宋艳波, 等. 鄂尔多斯盆地南部中生界烃源岩特征及油源对比[J]. 石油实验地质, 2012, 34(2): 173-177. doi: 10.3969/j.issn.1001-6112.2012.02.012

    CrossRef Google Scholar

    [7] 李龙龙, 李超, 王平平, 等. 鄂尔多斯盆地胡154富县组油藏建产有利区分析[J]. 石油化工应用, 2015, 34(2): 81-83.

    Google Scholar

    [8] 吕振华, 齐亚林, 孟令涛. 鄂尔多斯盆地西北部地区侏罗系成藏主控因素研究[J]. 新疆石油天然气, 2016, 12(1): 19-24.

    Google Scholar

    [9] 蒋代琴, 文志刚, 汤仁文, 等. 鄂尔多斯盆地吴起地区古地貌对侏罗系下部油藏形成和富集控制机制分析[J]. 地质力学学报, 2018, 24(5): 45-52.

    Google Scholar

    [10] 葛道凯, 杨起, 付泽明. 陕西榆林侏罗纪煤系基底古侵蚀面的地貌特征及其对富县组沉积作用的控制[J]. 沉积学报, 1991, 9(3): 65-73.

    Google Scholar

    [11] 李思田, 程守田, 杨士恭. 鄂尔多斯盆地东北部层序地层及沉积体系[M]. 北京: 地质出版社, 1992.

    Google Scholar

    [12] 焦养泉. 曲流河与湖泊三角洲沉积体系及典型骨架砂体内部构成分析[M]. 武汉: 中国地质大学出版社, 1995.

    Google Scholar

    [13] 刘犟, 李凤杰, 侯景涛, 等. 鄂尔多斯盆地吴起地区下侏罗统富县组沉积相特征[J]. 岩性油气藏, 2002, 24(3): 74-78.

    Google Scholar

    [14] Roser B P, Korsch R J. Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio[J]. Journal of Geology, 1986, 94: 635-650.

    Google Scholar

    [15] Roser B P, Korsch R J. Geochemical characterization, evolution and source of a Mesozoic accretionary wedge: The Torlesse terrane, New Zealand[J]. Geological Magazine, 1999, 136: 493-51.

    Google Scholar

    [16] Mclennan S M, Hemming S R, McDaniel D K, et al. Geochemical approaches to sedimention, provenance and tectonics[C]//Johansson M J, Basu A. Processes Controlling the Composition of Clastic Sediments. Special Paper of Geological Society America, 1993, 284: 21-40.

    Google Scholar

    [17] 杨守业, 李从先. REE示踪沉积物物源研究进展[J]. 地球科学进展, 1999, 14(2): 164-167.

    Google Scholar

    [18] Hill I G, Worden R H, Meighan I G. Geochemical evolution of a palaeolaterite: The interbasaltic formation, Northern Ireland[J]. Chemical Geology, 2000, 166: 65-84.

    Google Scholar

    [19] 闫义, 林舸, 王岳军, 等. 盆地陆源碎屑沉积物对源区构造背景的指示意义[J]. 地球科学进展, 2002, 17(1): 85-90.

    Google Scholar

    [20] 闫臻, 肖文交, 刘传周, 等. 祁连山老君山砾岩的碎屑组成及源区大地构造背景探讨[J]. 地质通报, 2006, 25(1/2): 83-98.

    Google Scholar

    [21] 闫臻, 王宗起, 王涛, 等. 秦岭泥盆系形成构造环境: 来自碎屑岩组成和地球化学方面的约束[J]. 岩石学报, 2007, 23(5): 1023-1042.

    Google Scholar

    [22] 刘池阳, 赵红格, 桂小军, 等. 鄂尔多斯盆地演化-改造的时空坐标及其成藏(矿)响应[J]. 地质学报, 2006, 80(5): 617-638.

    Google Scholar

    [23] 柳益群, 李继红, 冯乔, 等. 鄂尔多斯盆地三叠-侏罗系的成岩作用及其成藏成矿响应[J]. 岩石学报, 2009, 25(10): 2331-2339.

    Google Scholar

    [24] 张龙, 刘池洋, 雷开宇, 等. 鄂尔多斯盆地东北部侏罗系延安组漂白砂岩成因和古风化壳形成环境探讨[J]. 地质学报, 2017, 91(6): 1345-1359.

    Google Scholar

    [25] Gilbert G K. The topographic features of lake shores[J]. United States Geological Survey Annual Report, 1885, 5: 104-108.

    Google Scholar

    [26] 姜在兴. 沉积学[M]. 北京: 石油工业出版社, 2003.

    Google Scholar

    [27] Sun S S, McDonough W F. Chemical and isotopic systematic of oceanic basalts: Implication for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in Oceanic Basins. Spec. Publ. Geol. Soc. Lond., 1989, 42(1): 313-345.

    Google Scholar

    [28] Dickinson W R. Interpreting provenance relations from detrital modes of sandstones[J]. Provenance of Arenites. Nato Advanced Study Institute Series, 1985, 148: 333-361.

    Google Scholar

    [29] Dickinson W R, Suczek C A. Plate tectonic and sandstone compositions[J]. AAPG Bulletin, 1979, 63(12): 2164-2182.

    Google Scholar

    [30] Grazanti E. Sedimentary evolution and drowning of a passive margin shelf(Giumal Group; Zanskar Tethys Himalaya, India): Palaeoenvironmental changes during final break-up of Gondwana land[J]. Geological Society of London, Special Publications, 1993, 74: 277-298.

    Google Scholar

    [31] 王成善, 李祥辉. 沉积盆地分析原理与方法[M]. 北京: 高等教育出版社, 2003.

    Google Scholar

    [32] Roser B P, Korsch R J. Provenance signatures of sandstone-mudstone suite determined using discriminant function analtsis of major-element data[J]. Chemical Geology, 1988, 67(1/2): 119-139.

    Google Scholar

    [33] Bhatia M R, Crook K A W. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins[J]. Contribution to Mineralogy and Petrology, 1986, 92(2): 97-113.

    Google Scholar

    [34] Floyd P A, Leveridge B E. Tectonic environment of the Devonian Gramscatho basin, south Cornwall: Framework Mode and Geochemical Evidence from Turbiditic Sandstones[J]. Journal of the Geological Society, 1987, 144(4): 531-542.

    Google Scholar

    [35] 桑隆康, 马昌前. 岩石学[M]. 北京: 地质出版社, 2012.

    Google Scholar

    [36] 王剑, 谭富文, 付修根, 等. 沉积岩工作方法. 北京: 地质出版社, 2015.

    Google Scholar

    [37] Suttner L J, Basu A, Mack G H. Climate and the origin of quartz arenites[J]. Journal Sedimentary Petrology, 1981.51: 1235-1246.

    Google Scholar

    [38] Avigad D, Sandler A, Kolodner K, et al, Mass production of Cambro-Ordovician quartz-rich sandstone as a consequence of chemical weathering of Pan-African terranes: Environmental implications[J]. Earth and Planetary Science Letters, 2005, 240(3/4): 818-826.

    Google Scholar

    [39] 胡艳飞, 孔庆莹. 鄂尔多斯盆地西南部长8油层储层主控因素及分布规律[J]. 吉林大学学报(地球科学版), 2022, 52(4): 1078-1090.

    Google Scholar

    [40] 黄焱球, 程守田. 东胜煤系砂岩型高岭土的富集机理[J]. 煤田地质与勘探, 1999, 27: 13-16.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(3)

Article Metrics

Article views(2082) PDF downloads(108) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint