Citation: | ZENG Lei, ZHAO Guizhang. Groundwater response of loess slope during seasonal freeze-thaw process[J]. Geological Bulletin of China, 2022, 41(7): 1300-1307. doi: 10.12097/j.issn.1671-2552.2022.07.016 |
Freeze thaw geological hazards are one of the main forms of geological disasters in the Loess Plateau.Groundwater changes are the main driving factors of geological disasters in the process of seasonal freezing and thawing.In this paper, the response process of groundwater in Loess Slope during seasonal freeze-thaw process was studied by field monitoring and indoor simulation.Based on the numerical model of groundwater response in Loess Slope during seasonal freeze-thaw process, the variation law of water movement and spillover of loess slope during seasonal freeze-thaw process was simulated.The results show that in the early stage of freezing, the overflow amount of groundwater in the overflow zone decreases, and the groundwater level at the foot of the slope rises slightly, with an amplitude of about 1.5m; in the freezing period, the frozen depth of loess slope expands, the overflow zone is partially blocked, and the groundwater level rises at the foot of the slope, and the maximum groundwater level at the foot of the slope rises to 8.18m, and the saturated area continues to expand; in the thawing period, the overflow zone gradually recovers to discharge and the slope is straightened The groundwater level of the slope toe decreased significantly, and the saturation area narrowed, and finally recovered to the level before freezing.By simulating the whole process of groundwater response in the process of seasonal freeze-thaw on loess slope, this paper provides scientific basis for studying the instability mechanism of seasonal freeze-thaw landslide.
[1] | 刘传正. 中国地质灾害成因分析[J]. 地质评论, 2020, 66(5): 1334-1348. |
[2] | 雷祥义. 黄土高原地质灾害与人类活动[M]. 北京: 地质出版社, 2001. |
[3] | 张茂省, 朱立峰, 胡伟, 等. 灌溉引起的地质环境变化与黄土地质灾害——以甘肃黑方台灌区为例[M]. 北京: 科学出版社, 2016. |
[4] | Zhang M S, Liu J. Controlling factors of loess landslides in western China[J]. Environmental Earth Science, 2010, 59: 1671-1680. doi: 10.1007/s12665-009-0149-7 |
[5] | 张茂省, 李同录. 黄土滑坡诱发因素及其形成机理研究[J]. 工程地质学报, 2011, 19(4): 530-540. doi: 10.3969/j.issn.1004-9665.2011.04.014 |
[6] | 叶伟林, 康丽娟, 安亚鹏, 等. 甘肃永靖焦家村上庄2·28滑坡特点及成因分析[J]. 兰州大学学报(自然科学版), 2021, 57(3): 369-375, 381. |
[7] | 程鹏, 杨海军, 张亚卿, 等. 黄土地区季节性冻融触发滑坡的机理分析[J]. 中外公路, 2017, 37(1): 6-9. |
[8] | 朱立峰, 胡炜, 贾俊, 等. 甘肃永靖黑方台地区灌溉诱发型滑坡发育特征及力学机制[J]. 地质通报, 2013, 32(6): 840-846. doi: 10.3969/j.issn.1671-2552.2013.06.003 |
[9] | 李广, 张明礼, 叶伟林, 等. 甘肃黑方台坡面冻融特征及冻结滞水效应分析[J]. 干旱区资源与环境, 2021, 35(6): 117-122. |
[10] | 许领, 戴福初, 邝国麟, 等. 黑方台黄土滑坡类型与发育规律[C]//中国科学院地质与地球物理研究所2008学术论文汇编. 2009. |
[11] | 张茂省, 程秀娟, 董英, 等. 冻结滞水效应及其促滑机理——以甘肃黑方台地区为例[J]. 地质通报, 2013, 32(6): 24-32. |
[12] | 李守定, 乔华, 马世伟, 等. 基于温度-降雨双参数的新疆地质灾害预警模型[J]. 水利水电技术, 2021, 52(11): 207-218. |
[13] | 吴玮江. 季节性冻结滞水促滑效应——滑坡发育的一种新因素[J]. 冰川冻土, 1997, 19(4): 359-365. |
[14] | 王晓巍, 付强, 丁辉, 等. 季节性冻土去水文特性及模型研究进展[J]. 冰川冻土, 2009, 31(5): 953-959. |
[15] | 董晓宏, 张爱军, 连江波, 等. 反复冻融下黄土抗剪强度劣化的实验研究[J]. 冰川冻土, 2010, 32(4): 767-772. |
[16] | 叶万军, 杨更社, 彭建兵, 等. 冻融循环导致洛川黄土边坡剥落病害产生机制的实验研究[J]. 岩石力学与工程学报, 2012, 31(1): 199-205. |
[17] | 王念秦, 罗东海. 黄土斜(边)坡表层冻结效应及其稳定响应[J]. 工程地质学报, 2010, 18(5): 760-765. |
[18] | 曾磊, 赵贵章, 胡炜, 等. 冻融条件下浅层黄土中温度与水分的空间变化相关性[J]. 地质通报, 2015, 34(11): 2123-2131. |
[19] | 曾磊, 段磊, 李万鹏, 等. 一种可测定变温下饱和-非饱和土水力学参数的实验装置[J]. 南水北调与水利科技, 2016, 14(4): 142-146. |
[20] | 曾磊, 段磊, 李万鹏, 等. 温度对黄土水力学参数的影响研究[J]. 工程地质学报, 2016, 24(4): 610-615. |
[21] | 赵贵章. 鄂尔多斯盆地风沙滩地区包气带水-地下水转化机理研究[D]. 长安大学博士学位论文, 2011. |
Schematic diagram of hydrogeological section of South - North of Heifangtai
The diagrammatic cross-section and real photo of typical site
Two dimensional conceptual model of water movement in vadose zone profile
Schematic diagram of section triangulation
Schematic diagram of initial conditions of hydrogeological conceptual model
Layout of observation holes
Dynamic fitting diagram of underground water level of observation hole
Dynamic fitting diagram of groundwater level at slope toe
Groundwater flow direction of slope during seasonal freeze-thaw process
Velocity chart of groundwater in slope during seasonal freezing and thawing
Distribution of initial water content of the model
Water content distribution of slope on December 17, 2012
Distribution of slope saturation area during freezing period
Distribution of saturated area in the melting period
Dynamic diagram of groundwater level of slope during seasonal freeze-thaw process
Variation of overflow zone range with time
Variation of overflow volume with time