2022 Vol. 41, No. 7
Article Contents

GUO Xiyun, LI Mengxing. Petrogenesis of the Late Carboniferous Aolun granite in the southern Da Hinggan Mountains and its insight into the evolution of the Paleo-Asia Ocean[J]. Geological Bulletin of China, 2022, 41(7): 1191-1201. doi: 10.12097/j.issn.1671-2552.2022.07.006
Citation: GUO Xiyun, LI Mengxing. Petrogenesis of the Late Carboniferous Aolun granite in the southern Da Hinggan Mountains and its insight into the evolution of the Paleo-Asia Ocean[J]. Geological Bulletin of China, 2022, 41(7): 1191-1201. doi: 10.12097/j.issn.1671-2552.2022.07.006

Petrogenesis of the Late Carboniferous Aolun granite in the southern Da Hinggan Mountains and its insight into the evolution of the Paleo-Asia Ocean

More Information
  • In this paper, zircon U-Pb age, geochemical characteristics study has been conducted on the Aolun granite, which is located in the Xing'an block.The granite is composed of quartz monosite and monzontic granite.The zircon U-Pb age of monzontic granite is 315.6±0.9 Ma, indicating that they are the the products of magmatic activity in the Late Carboniferous.The Aolun granite is enriched in Na(Na2O=3.27%~7.24%), alkali(Na2O+K2O=8.19%~9.17%)and belongs to weakly peraluminous-strongly peraluminous granite(A/CNK=1.01~1.22).The granite has lower ΣREE, without pronounced negative Eu anomalies(δEu=0.62~0.93).It also enriched in some LILE(Rb, Th, K)and LREE, depletions Sr and different depletions HFSE(Ta, Nb, P, Ti).The granite is a I-type granite and belongs to the high K calc-alkaline series, and transitions to A-type granite.These features are similar to geochemical characteristics of continental crust composition.Combined with tectonic enevironment discrimination diagram, the Aolun granite is the product of the early stage post-orogenic extension, it is suggested that the region of the Paleo-Asian Ocean closed before the Late Carboniferous(315.6±0.9 Ma).

  • 加载中
  • [1] Wu F Y, Yang J H, Sun D Y, et al. The Hulan Group: Its role in the evolution of the Central Asian Orogenic Belt of NE China[J]. Jouranl of Asian Earth Sciences, 2005, 30(3/4): 542-556.

    Google Scholar

    [2] Wang T, Zheng Y D, Zhang J J, et al. Pattern and kinematic polarity of late Mesozoic extension in continental NE Asia: Perspectives from metamorphic core complexes[J]. Tectonics, 2011, 30(6): 7-33.

    Google Scholar

    [3] Xiao W J, Windley B F, Hao J, et al. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt[J]. Tectonics, 2003, 2(6): 1069-1089.

    Google Scholar

    [4] 洪大卫, 黄怀曾, 肖宜君, 等. 内蒙古东部二叠纪碱性花岗岩及其地球动力学意义[J]. 地质学报, 1994, 68(3): 219-230.

    Google Scholar

    [5] 刘锐, 杨振, 徐启东, 等. 大兴安岭南段海西期花岗岩锆石U-Pb年龄、元素和Sr-Nd-Pb同位素地球化学: 岩石成因及构造意义[J]. 岩石学报, 2016, 32(5): 1505-1527.

    Google Scholar

    [6] 李敏, 李敏, 程银行, 等. 内蒙古东乌旗晚古生代闪长岩、二长花岗岩年代学特征及岩石成因[J]. 中国地质, 2016, 43(2): 380-394. doi: 10.3969/j.issn.1000-3657.2016.02.002

    CrossRef Google Scholar

    [7] 王树庆, 胡晓佳, 赵华雷, 等. 内蒙古京格斯台晚石炭世碱性花岗岩年代学及地球化学特征——岩石成因及对构造演化的制约[J]. 地质学报, 2017, 91(7): 1467-1482.

    Google Scholar

    [8] 杨多, 陈满, 龚全德, 等. 内蒙古阿巴嘎旗白音图嘎地区晚石炭世花岗岩地球化学特征、锆石U-Pb定年及其地质意义[J]. 地质论评, 2017, 63(5): 1209-1225.

    Google Scholar

    [9] 程银行, 李艳锋, 李敏, 等. 内蒙古东乌旗碱性侵入岩的时代、成因及地质意义[J]. 地质学报, 2014, 88(11): 2086-2096.

    Google Scholar

    [10] 张超, 吴新伟, 刘永江, 等. 大兴安岭中段早二叠世A型花岗岩成因及对扎兰屯地区构造演化的制约[J]. 岩石学报, 2020, 36(4): 1091-1106.

    Google Scholar

    [11] 崔芳华, 郑常青, 徐学纯, 等. 大兴安岭全胜林场地区晚石炭世岩浆活动研究: 对兴安地块与松嫩地块拼合时间的限定[J]. 地质学报, 2013, 87(9): 1247-1263.

    Google Scholar

    [12] Tian D X, Yang H, Ge W C, et al. Petrogenesis and tectonic implications of Late Carboniferous continental arc high-K granites in the Dongwuqi area, central Inner Mongolia, North China[J]. Journal of Asian Earth Sciences, 2018, 167: 82-102. doi: 10.1016/j.jseaes.2018.07.010

    CrossRef Google Scholar

    [13] 李怀坤, 朱士兴, 相振群, 等. 北京高于庄组凝灰岩的锆石U-Pb定年研究及对华北北部中元古界划分新方案的进一步约束[J]. 岩石学报, 2010, 26(7): 2131-2140.

    Google Scholar

    [14] Ludwig K R. Isoplot3.0: A geochronological toolkit for Microsoft Excel[M]. Berkeley Geochron Centre Special Publication, 2003, (4): 1-70.

    Google Scholar

    [15] Le Maitre R W. Igneous Rocks: A Classification and Glossary of Terms (2nd Edition)[J]. Cambridge University Press, 2002: 33-39.

    Google Scholar

    [16] Morrison W G. Characteristics and tectonic setting of the shoshonite rock association[J]. Lithos, 1980, 13(1): 97-108. doi: 10.1016/0024-4937(80)90067-5

    CrossRef Google Scholar

    [17] Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989, 101(5): 635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    CrossRef Google Scholar

    [18] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in Ocean Basins[J]. Geological Society of London, Specical Publications, 1989, 42(1): 313-345.

    Google Scholar

    [19] King P L, White A J R, Chappell B W. Characterization and origin of aluminous A-type granites from the Lachlan fold belt, southeastern Australia[J]. Journal of Petrology, 1997, 38(3): 371-391. doi: 10.1093/petroj/38.3.371

    CrossRef Google Scholar

    [20] Collins W J, Beams S D, White A J R, et al. Nature and origin of A-type granites with particular reference to southeastern Australia[J]. Contributions to Mineralogy and Petrology, 1982, 80(2): 189-200. doi: 10.1007/BF00374895

    CrossRef Google Scholar

    [21] Whalen J B, Currie K L, Chappell B W. A-type granites: Geochemical characteristics, discrimination and petrogenesis[J]. Contrib. Miner. Petrol., 1987, 95: 407-419. doi: 10.1007/BF00402202

    CrossRef Google Scholar

    [22] Sylvester P J. Post-collisional alkaline granites[J]. The Journal of Geology, 1989, 97: 261-280. doi: 10.1086/629302

    CrossRef Google Scholar

    [23] Chappell B W. Aluminium saturation in I-and S-type granites and the characterization of fractionated haplogranites[J]. Lithos, 1999, 46(3): 535-551. doi: 10.1016/S0024-4937(98)00086-3

    CrossRef Google Scholar

    [24] Watson E B, Harrison T M. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magmatypes[J]. Earth Planet. Sci. Lett, 1983, 64(2): 295-304. doi: 10.1016/0012-821X(83)90211-X

    CrossRef Google Scholar

    [25] 王强, 赵振华, 熊小林. 桐柏-大别山带燕山晚期A型花岗岩的厘定[J]. 岩石矿物学杂志, 2000, 19(4): 297-306.

    Google Scholar

    [26] Allegre C J, Minster J F. Quantitative models of trace element behavior in magmatic process[J]. Earth and Plantary Science Letters, 1978, 38: 1-25.

    Google Scholar

    [27] Wu F Y, Jahn B M, Wilder S A, et al. Highly fractionated I-type granites in NE China (J): Geochronology and petrogenesis. Lithos, 2003, 66(3/4): 241-273.

    Google Scholar

    [28] 熊光强, 刘敏, 张达, 等. 内蒙古西乌旗迪彦庙蛇绿岩带内辉长岩地球化学及年代学[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1599-1614.

    Google Scholar

    [29] 张健, 张德军, 郑月娟, 等. 内蒙古林西上二叠统林西组碎屑锆石LA-ICP-MS年代学及其构造意义[J]. 吉林大学学报(地球科学版), 2020, 50(4): 1090-1103.

    Google Scholar

    [30] Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25(4): 956-983.

    Google Scholar

    山西省地质调查院. 1: 5万勃洛浑迪等四幅区调地质调查报告. 2011.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(2)

Article Metrics

Article views(1073) PDF downloads(178) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint