2022 Vol. 41, No. 7
Article Contents

WANG Bin, XIE Chaoming, DONG Yongsheng, SONG Yuhang, DUAN Menglong. Geochemical characteristics of ultramafic rocks in Sumdo area, Xizang and its enlightenment for the evolution of the Sumdo Paleo-Tethys Ocean[J]. Geological Bulletin of China, 2022, 41(7): 1144-1154. doi: 10.12097/j.issn.1671-2552.2022.07.002
Citation: WANG Bin, XIE Chaoming, DONG Yongsheng, SONG Yuhang, DUAN Menglong. Geochemical characteristics of ultramafic rocks in Sumdo area, Xizang and its enlightenment for the evolution of the Sumdo Paleo-Tethys Ocean[J]. Geological Bulletin of China, 2022, 41(7): 1144-1154. doi: 10.12097/j.issn.1671-2552.2022.07.002

Geochemical characteristics of ultramafic rocks in Sumdo area, Xizang and its enlightenment for the evolution of the Sumdo Paleo-Tethys Ocean

More Information
  • The proposal of Tangjia-Sumdo Paleo-Tethys suture zone has changed the understanding of Paleo-Tethys evolution pattern in the Qinghai Xizang Plateau.The petrological and geochemistry of ultramafic rocks in Sumdo area are studied to manifest the genesis and type of the ophiolite in the Tangjia-Sumdo Paleo-Tethys suture zone.The results show the ultramafic rocks have higher MgO and TFe2O3 but lower Al2O3and TiO2 contents compared with those of the primitive mantle.The total rare-earth element(REE)contents of the samples are 4.04×10-6~9.31×10-6, which are lower than those of the primitive mantle.The chondrite-normalized REE patterns display a U-type, and they are enrichment in LREE.The primitive mantle-normalized spider diagrams show an abyssal peridotites affinity, there are obvious negative anomalies of Th and Nb.Most of the samples show slight negative Zr and Hf anomalies.Through quantitative modeling, we conclude that the ultramafic rocks are refractory residual formed by more than 25% batch melting of spinel lherzolite mantle, and the inheritance of some garnet signatures was observed in the samples to a certain extent.They are not modified by later rock-melt reaction, the protolith of the ultramafic rocks may be depleted abyssal peridotite.Combining with regional geology, we suggest that the ultramafic rocks in Sumdo area may have been formed in the mid ocean ridge(MOR)setting and are one of the typical end members of mid ocean ridge basalt(MORB)type ophiolites.

  • 加载中
  • [1] Liu Y M, Li S Z, Santosh M, et al. The generation and reworking of continental crust during early Paleozoic in Gondwanan affinity terranes from the Xizang Plateau[J]. Earth Science Reviews, 2019, 190: 486-497. doi: 10.1016/j.earscirev.2019.01.019

    CrossRef Google Scholar

    [2] Xu Z Q, Dilek Y, Cao H, et al. Paleo-Tethyan evolution of Xizang as recorded in the East Cimmerides and West Cathaysides[J]. Journal of Asian Earth Sciences, 2015, 105(1): 320-337.

    Google Scholar

    [3] 李才. 龙木错-双湖-澜沧江板块缝合带与羌塘古特提斯洋演化记录[J]. 地质通报, 2007, 26(1): 13-21. doi: 10.3969/j.issn.1671-2552.2007.01.003

    CrossRef Google Scholar

    [4] Yang J S, Xu Z Q, Li Z L, et al. Discovery of an Eclogite Belt in the Lhasa Block, Xizang: A New Border for Paleo-Tethys?[J]. Journal of Asian Earth Sciences, 2009, 34(1): 76-89. doi: 10.1016/j.jseaes.2008.04.001

    CrossRef Google Scholar

    [5] Cheng H, Zhang C, Jeffrey D V, et al. Zircon U-Pb and garnet Lu-Hf geochronology of eclogites from the Lhasa Block, Xizang[J]. Lithos, 2012, 155: 341-359. doi: 10.1016/j.lithos.2012.09.011

    CrossRef Google Scholar

    [6] Cheng H, Liu Y M, Jeffrey D V, et al. Combined U-Pb, Lu-Hf, Sm-Nd and Ar-Ar multichronometric dating on the Bailang eclogite constrains the closure timing of the Paleo-Tethys Ocean in the Lhasa terrane, Xizang[J]. Gondwana Research, 2015, 28(2015): 1482-1499.

    Google Scholar

    [7] Li Z L, Yang J S, Xu Z Q, et al. Geochemistry and Sm-Nd and Rb-Sr isotopic composition of eclogite in the Lhasa terrane, Xizang, and its geological significance[J]. Lithos, 2009, 109: 240-247. doi: 10.1016/j.lithos.2009.01.004

    CrossRef Google Scholar

    [8] 申婷婷, 张聪, 田作林, 等. 拉萨地块吉朗榴辉岩的岩石学研究及其对古特提斯洋壳俯冲折返过程的限定[J]. 岩石矿物学杂志, 2018, 37(6): 51-66.

    Google Scholar

    [9] Weller O M, St-Onge M R, Rayner N, et al. U-Pb zircon geochronology and phase equilibria modelling of a mafic eclogite from the Sumdo complex of south-east Xizang: insights into prograde zircon growth and the assembly of the Xizang plateau[J]. Lithos, 2016, 262: 729-741. doi: 10.1016/j.lithos.2016.06.005

    CrossRef Google Scholar

    [10] Zeng L S, Liu J, Gao L E, et al. Early Mesozoic high-pressure metamorphism within the Lhasa block, Xizang and implications for regional tectonics[J]. Earth Science Frontiers, 2009, 16(2): 140-151.

    Google Scholar

    [11] Zhang C, Bader T, van Roermund H, et al. The metamorphic evolution and tectonic significance of the Sumdo HP-UHP metamorphic terrane, central-south Lhasa Block, Xizang[J]. Geological Society London Special Publications, 2019, 474: 209-229. doi: 10.1144/SP474.4

    CrossRef Google Scholar

    [12] 黄杰, 田作林, 张聪, 等. 拉萨地块松多榴辉岩的变质演化过程: NCKMnFMASHTO体系中的相平衡关系[J]. 中国地质, 2015, 42(5): 1559-1571. doi: 10.3969/j.issn.1000-3657.2015.05.024

    CrossRef Google Scholar

    [13] Li Y, Zhang C, Liu X, et al. Metamorphism and Oceanic Crust Exhumation-Constrained by theJilang Eclogite and Meta-Quartzite from the Sumdo (U) HP Metamorphic Belt[J]. Journal of Earth Science, 2019, 30(3): 510-524. doi: 10.1007/s12583-019-0894-9

    CrossRef Google Scholar

    [14] Wang B, Xie C M, Fan J J, et al. Genesis and tectonic setting of Middle Permian OIB-type mafic rocks in the Sumdo area, southern Lhasa terrane[J]. Lithos, 2019, 324/325: 429-438. doi: 10.1016/j.lithos.2018.11.015

    CrossRef Google Scholar

    [15] Wang B, Xie C M, Dong Y S, et al. Middle Permian adakitic granite dikes in the Sumdo region, central Lhasa terrane, central Xizang: Implications for the subduction of the Sumdo Paleo-Tethys Ocean[J]. Journal of Asian Earth Sciences, 2021, 205(2021): 104610.

    Google Scholar

    [16] Shi R D. Research Progress, Existing Problems and Consideration of Ophiolite[J]. Geological Review, 2015, 51(6): 681-693.

    Google Scholar

    [17] 陈松永. 西藏拉萨地块中古特提斯缝合带的厘定[D]. 中国地质科学院博士学位论文, 2010.

    Google Scholar

    [18] Chen S Y, Yang J S, Li Y, et al. Ultramafic blocks in the Sumdo Region, Lhasa Block, Eastern Xizang Plateau: an ophiolite unit[J]. Journal of Earth Science, 2009, 20: 332-347. doi: 10.1007/s12583-009-0028-x

    CrossRef Google Scholar

    [19] Wang B, Xie C M, Dong Y S, et al. Middle-late Permian mantle plume/hotspot-ridge interaction in the Sumdo Paleo-Tethys Ocean region, Xizang: Evidence from mafic rocks[J]. Lithos, 2021, 390/391(2021): 106128.

    Google Scholar

    [20] Niu Y, O'Hara M J. Origin of ocean island basalts: A new perspective from petrology, geochemistry, and mineral physics considerations[J]. Journal of Geophysical Research Solid Earth, 2003, 108(B4): 2209.

    Google Scholar

    [21] Niu Y. Bulk-rock Major and Trace Element Compositions of Abyssal Peridotites: Implications for Mantle Melting, Melt Extraction and Post-melting Processes Beneath Mid-Ocean Ridges[J]. Journal of Petrology, 2004, 45(12): 2423-2458. doi: 10.1093/petrology/egh068

    CrossRef Google Scholar

    [22] Zhu D C, Zhao Z D, Niu Y L, et al. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth[J]. Earth Planet. Sci. Lett., 2011, 301: 241-255. doi: 10.1016/j.epsl.2010.11.005

    CrossRef Google Scholar

    [23] 杨经绥, 许志琴, 耿全如, 等. 中国境内可能存在一条新的高压/超高压(?)变质带——青藏高原拉萨地体中发现榴辉岩带[J]. 地质学报, 2006, 80(12): 1787-1792. doi: 10.3321/j.issn:0001-5717.2006.12.001

    CrossRef Google Scholar

    [24] 王斌. 西藏松多地区蛇绿岩的识别及构造意义[D]. 吉林大学硕士学位论文, 2019.

    Google Scholar

    [25] 解超明, 宋宇航, 王明, 等. 冈底斯中部松多岩组形成时代及物源: 来自碎屑锆石U-Pb年代学证据[J]. 地球科学, 2019, (7): 2224-2233.

    Google Scholar

    [26] 于红. 陕西商南松树沟橄榄岩矿物地球化学特征及成因机理示踪[D]. 中国地质大学(北京)硕士学位论文, 2011.

    Google Scholar

    [27] Coleman R G. Ophiolite-ancient Oceanic Lithosphere[M]. Berlin. Heidelberg, New York, Spring-Verlag. 1977.

    Google Scholar

    [28] Bodinier J L, Godard M. Orogenic, Ophiolitic, and Abyssal Peridotites[J]. Treatise on Geochemistry, 2014, 2: 103-167.

    Google Scholar

    [29] Whattam S A, Stern R J. The subduction initiation rule: a key for linking ophiolites, intra-oceanic forearcs, and subduction initiation[J]. Contributions to Mineralogy & Petrology, 2011, 162(5): 1031-1045.

    Google Scholar

    [30] Boynton, William V. Cosmochemistry of the Rare Earth Elements: Meteorite Studies[J]. Developments in Geochemistry, 1984, 2: 63-114.

    Google Scholar

    [31] Mcdonough W F, Sun S S. The composition of the Earth[J]. Chemical Geology, 1995, 120(3/4): 223-253.

    Google Scholar

    [32] 陈德潜, 陈刚. 实用稀土元素地球化学[M]. 北京: 冶金工业出版社, 1990.

    Google Scholar

    [33] 王希斌, 郝梓国. 中国造山带蛇绿岩的时空分布及构造类型[J]. 中国区域地质, 1994, 13(3): 193-204.

    Google Scholar

    [34] Parkinson I J, Pearce J A. Peridotites from the Izu-Bonin-Mariana Forearc (ODP Leg 125): Evidence for Mantle Melting and Melt-Mantle Interaction in a Supra-Subduction Zone Setting[J]. Jour. Petrol., 1998, 39(9): 1577-1618. doi: 10.1093/petroj/39.9.1577

    CrossRef Google Scholar

    [35] Dick H J B, Bullen T. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas[J]. Contributions to Mineralogy and Petrology, 1984, 86(1): 54-76. doi: 10.1007/BF00373711

    CrossRef Google Scholar

    [36] Uysal I, Kaliwoda M, Karsli O, et al. Compositional variations as a result of partial melting and melt-peridotite interaction in an upper mantle section from the ortaca area, southwestern turkey[J]. The Canadian Mineralogist, 2007, 45(6): 1471-1493. doi: 10.3749/canmin.45.6.1471

    CrossRef Google Scholar

    [37] Mysen B O, Kushiro I. Compositional variations of coexisting phases with degree of melting of peridotite in the upper mantle[J]. American Mineralogist, 1977, 62(9/10): 843-865.

    Google Scholar

    [38] Jaques A L, Green D H. Anhydrous melting of peridotite at 0-15kb pressure and the genesis of tholeiitic basalts[J]. Contributions to Mineralogy and Petrology, 1980, 73(3): 287-310. doi: 10.1007/BF00381447

    CrossRef Google Scholar

    [39] Himmelberg G R, Loney R A. Petrology of the Vulcan Peak Alpine-type peridotite, southwestern Oregon[J]. Geological Society of America Bulletin, 1973, 84(5): 1585-1600. doi: 10.1130/0016-7606(1973)84<1585:POTVPA>2.0.CO;2

    CrossRef Google Scholar

    [40] Kelemen P B, Dick H J, Quick J E. Formation of harzburgite by pervasive melt/rock reaction in the upper mantle[J]. Nature, 1992, 358(6388): 635-641. doi: 10.1038/358635a0

    CrossRef Google Scholar

    [41] Crawford A J, Beccaluva L, Serri G. Tectono-magmatic evolution of the West Philippine-Mariana region and the origin of boninites[J]. Earth Planet. Sci. Lett., 1981, 54(2): 346-356. doi: 10.1016/0012-821X(81)90016-9

    CrossRef Google Scholar

    [42] 徐德明, 黄圭成, 雷义均. 西藏西南部拉昂错地幔橄榄岩的地球化学特征及其构造意义[J]. 岩石矿物学杂志, 2008, 27(1): 1-13.

    Google Scholar

    [43] Dupuis C, Hébert R, Dubois C V, et al. Petrology and geochemistry of mafic rocks from mélange and flysch units adjacent to the Yarlung Zangbo Suture Zone, southern Xizang[J]. Chemical Geology, 2005, 214(3/4): 287-308.

    Google Scholar

    [44] 刘函, 王保弟, 陈莉, 等. 日喀则夏鲁N-MORB型辉长岩与辉绿岩: 雅鲁藏布江特提斯洋早白垩世初始俯冲记录[J]. 地质通报, 2021, 40(11): 1836-1851. doi: 10.12097/j.issn.1671-2552.2021.11.004

    CrossRef Google Scholar

    [45] Bedarde E, Hebert R, Guilmette C, et al. Petrology and geochemistry of the Saga and Sangsang ophiolitic massifs, Yarlung Zangbo Suture Zone, Southern Xizang: Evidence for an arc-back-arc origin[J]. Lithos, 2009, 113(1/2): 48-67.

    Google Scholar

    [46] 徐向珍, 杨经绥, 郭国林, 等. 雅鲁藏布江缝合带西段普兰蛇绿岩中地幔橄榄岩的岩石学研究[J]. 岩石学报, 2011, 27(11): 3179-3196.

    Google Scholar

    [47] 徐梦婧, 金振民. 西藏罗布莎地幔橄榄岩变形显微构造特征及其地质意义[J]. 地质通报, 2010, 29(12): 1795-1803.

    Google Scholar

    [48] 连东洋, 杨经绥, 熊发挥, 等. 雅鲁藏布江蛇绿岩带西段达机翁地幔橄榄岩组成特征及其形成环境分析[J]. 岩石学报, 2014, 30(8): 2164-2184.

    Google Scholar

    [49] 张利, 杨经绥, 刘飞, 等. 南公珠错地幔橄榄岩: 雅鲁藏布江缝合带西段一个典型的大洋地幔橄榄岩[J]. 岩石学报, 2016, 32(12): 95-118.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(1)

Article Metrics

Article views(2461) PDF downloads(131) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint