2022 Vol. 41, No. 6
Article Contents

LIU Xiangdong, ZHOU Mingling, XU Shaohui, YIN Zhaokai, XU Zhonghua, LIU Guodong, FAN Jiameng. Prospecting prediction and verification at a depth of 3000 m in the Shuiwangzhuang gold deposit, northwestern Jiaodong Peninsula, eastern China[J]. Geological Bulletin of China, 2022, 41(6): 946-957. doi: 10.12097/j.issn.1671-2552.2022.06.003
Citation: LIU Xiangdong, ZHOU Mingling, XU Shaohui, YIN Zhaokai, XU Zhonghua, LIU Guodong, FAN Jiameng. Prospecting prediction and verification at a depth of 3000 m in the Shuiwangzhuang gold deposit, northwestern Jiaodong Peninsula, eastern China[J]. Geological Bulletin of China, 2022, 41(6): 946-957. doi: 10.12097/j.issn.1671-2552.2022.06.003

Prospecting prediction and verification at a depth of 3000 m in the Shuiwangzhuang gold deposit, northwestern Jiaodong Peninsula, eastern China

More Information
  • The Shuiwangzhuang gold deposit is located at the southeast segment of the Linglong goldfield, northwestern Jiaodong Peninsula, with a pre-mining endowment more than 180 t of gold.The maximum controlled depth of the orebodies is 2200 m.At present, the prospect depth of main gold fields in the northwestern Jiaodong Peninsula has reached 2000 m, a correct understanding of the prospecting potential at a depth of 3000 m is not only a practical need for further deep prospecting in this region, but also has important demonstration significance for deep prospecting throughout the country.Basing on the research of geological characteristics, mineralization enrichment regularities and deep geophysical probing, deep prospecting potential of the Shuiwangzhuang gold deposit was implemented, and the deep drill hole was constructed to verify its effect.At the same time, the deep gold resources potential is discussed.The main orebodies are controlled by the NEE- to NE-trending Zhaoping fault system, with NE direction of lateral trending and SE direction of plunging.The orebodies segment into a number of enrichment zones along the lateral trending and plunging direction.The orebodies may extend to the east of No.5 exploration line, and below the depth of -2200 m.The MT profile shows that the Zhaoping fault system extend stably to the deep, and the dip angle changes from 27° to 18° at a depth of -2500~-3000 m, indicating good prospecting potential.According to the prospecting results, a 3000.58 m drill hole was constructed, and one gold orebody with thickness of 1.5 m and gold grade of 6.85 g/t was found from 2831.15 m to 2832.65 m.Further analysis shows huge potential of the deep in the northern Zhaoping fault system.It is predicted that there exists a third mineralization enrichment zone at the depth of -2000 ~ -3000 m, and the gold resources may exceed 400 t.

  • 加载中
  • [1] 宋明春. 胶东金矿深部找矿主要成果和关键理论技术进展[J]. 地质通报, 2015, 34(9) : 1758-1771. doi: 10.3969/j.issn.1671-2552.2015.09.017

    CrossRef Google Scholar

    [2] 宋明春, 宋英昕, 丁正江, 等. 胶东金矿床: 基本特征和主要争议[J]. 黄金科学技术, 2018, 26(4), 406-422.

    Google Scholar

    [3] 宋明春, 徐军祥, 焦秀美, 等. 山东省地质矿产勘查开发局60年重要找矿成果和深部隐伏区找矿技术进展[J]. 山东国土资源, 2018, 34(10) : 1-14.

    Google Scholar

    [4] 于学峰, 李大鹏, 田京祥, 等. 山东金矿深部勘查进展与成矿理论创新[J]. 山东国土资源, 2018.34(5) : 1-13. doi: 10.3969/j.issn.1672-6979.2018.05.001

    CrossRef Google Scholar

    [5] 鲍中义, 孙忠全, 刘国栋, 等. 破头青断裂水旺庄矿区矿床地质特征及找矿方向[J]. 山东国土资源, 2014, 30(2) : 29-33. doi: 10.3969/j.issn.1672-6979.2014.02.008

    CrossRef Google Scholar

    [6] 刘国栋, 温桂军, 刘彩杰, 等. 招平断裂北段水旺庄深部超大型金矿床的发现、特征和找矿方向[J]. 黄金科学技术, 2017, 25(3) : 38-45.

    Google Scholar

    [7] 刘国栋, 李娟. 胶东招平断裂-2200m特大型金矿体地质特征与找矿标志[J]. 山东国土资源, 2019, 35(1) : 4-10.

    Google Scholar

    [8] 刘国栋, 宋国政, 鲍中义, 等. 胶东招平断裂北段深部找矿新突破及对断裂空间展布的新认识[J]. 大地构造与成矿学, 2019, 43(2) : 226-234.

    Google Scholar

    [9] 刘日富, 周鑫, 吕雨璐, 等. 胶东三山岛-仓上断裂带控矿规律与找矿勘查实践[J]. 地质与勘探, 2019, 55(2) : 528-541.

    Google Scholar

    [10] 宋国政, 李山, 闫春明, 等. 焦家金矿田Ⅰ号主矿体地质特征及找矿方向[J]. 地质与勘探, 2018, 54(2) : 219-229. doi: 10.3969/j.issn.0495-5331.2018.02.001

    CrossRef Google Scholar

    [11] Yang L Q, Guo L N, Wang Z L, et al. Timing and mechanism of gold mineralization at the Wang'ershan gold deposit, Jiaodong Peninsula, eastern China[J]. Ore Geology Reviews, 2017, 88: 491-510. doi: 10.1016/j.oregeorev.2016.06.027

    CrossRef Google Scholar

    [12] 刘向东, 邓军, 张良, 等. 胶西北寺庄金矿床热液蚀变作用[J]. 岩石学报, 2019, 35(5) : 1551-1565.

    Google Scholar

    [13] 丁正江, 孙丰月, 刘福来, 等. 胶东中生代动力学演化及主要金属矿床成矿系列[J]. 岩石学报, 2015, 31(10) : 3045-3080.

    Google Scholar

    [14] 曲晓明, 王鹤年, 饶冰. 胶东群部分熔化实验及其对花岗岩成因的指示[J]. 地球化学, 2000, 29(2) : 153-161. doi: 10.3321/j.issn:0379-1726.2000.02.007

    CrossRef Google Scholar

    [15] 刘平华, 刘福来, 王舫, 等. 山东半岛荆山群富铝片麻岩锆石U-Pb定年及其地质意义[J]. 岩石矿物学杂志, 2011, 30(5) : 829-843. doi: 10.3969/j.issn.1000-6524.2011.05.007

    CrossRef Google Scholar

    [16] 谢士稳, 王世进, 颉颃强, 等. 华北克拉通胶东地区粉子山群碎屑锆石SHRIMP U-Pb定年[J]. 岩石学报, 2014, 30(10) : 2989-2998.

    Google Scholar

    [17] 朱光, 徐嘉炜, Flether C J N, 等. 应用X射线衍射分析胶北蓬莱群板岩中的变质作用[J]. 地质与勘探, 1994, 30(2) : 42-49.

    Google Scholar

    [18] 初航, 陆松年, 王慧初, 等. 山东长岛地区蓬莱群辅子夼组碎屑锆石年龄谱研究[J]. 岩石学报, 2011, 27(4) : 1017-1028.

    Google Scholar

    [19] Ma L, Jiang S Y, Dai B Z, et al. Multiple sources for the origin of Late Jurassic Linglong adakitic granite in the Shandong Peninsula, eastern China: Zircon U-Pb geochronological, geochemical and Sr-Nd-Hf isotopic evidence[J]. Lithos, 2013, 162/163: 251-263. doi: 10.1016/j.lithos.2013.01.009

    CrossRef Google Scholar

    [20] Yang L Q, Dilek Y, Wang Z L, et al. Late Jurassic, high Ba-Sr Linglong granites in the Jiaodong Peninsula, East China: Lower crustal melting products in the eastern North China Craton[J]. Geological Magazine, 2018, 155(5) : 1040-1062. doi: 10.1017/S0016756816001230

    CrossRef Google Scholar

    [21] 耿科, 王瑞江, 李洪奎, 等. 胶西北丛家花岗闪长岩体SHRIMP锆石U-Pb年代学研究[J]. 地球学报, 2016, 37(1) : 90-100.

    Google Scholar

    [22] Goss C S, Wilde A S, Wu F Y, et al. The age, isotopic signature and significance of the youngest Mesozoic granitoids in the Jiaodong Terrane, Shandong Province, North China Craton[J]. Lithos, 2010, 120(3/4) : 309-326.

    Google Scholar

    [23] 杨宽, 王建平, 林进展, 等. 胶东半岛艾山岩体岩石地球化学特征及成因意义[J]. 地质与勘探, 2012, 48(4) : 693-703.

    Google Scholar

    [24] 刘利双, 刘福来, 冀磊, 等. 北苏鲁超高压变质带内多成因类型的变花岗质岩石及其地质意义[J]. 岩石学报, 2018, 34(6) : 1557-1580.

    Google Scholar

    [25] Deng J, Wang Q F. Gold mineralization in China: Metallogenic provinces, deposit types and tectonic framework[J]. Gondwana Research, 2016, 36: 219-274. doi: 10.1016/j.gr.2015.10.003

    CrossRef Google Scholar

    [26] 杨立强, 邓军, 王中亮, 等. 胶东中生代金成矿系统[J]. 岩石学报, 2014, 30(9) : 2447-2467.

    Google Scholar

    [27] Yang L Q, Deng J, Guo L N, et al. Origin and evolution of ore fluid, and gold-deposition processes at the giant Taishang gold deposit, Jiaodong Peninsula, eastern China[J]. Ore Geology Reviews, 2016, 72: 585-602. doi: 10.1016/j.oregeorev.2015.08.021

    CrossRef Google Scholar

    [28] 宋明春, 伊丕厚, 徐军祥, 等. 胶西北金矿阶梯式成矿模式[J]. 中国科学: 地球科学, 2012, 42(7) : 992-1000.

    Google Scholar

    [29] 宋明春, 林少一, 杨立强, 等. 胶东金矿成矿模式[J]. 矿床地质, 2020, 39(2) : 215-236.

    Google Scholar

    [30] 李士先, 刘长春, 安郁宏, 等. 胶东金矿地质[M]. 北京: 地质出版社, 2007: 325-400.

    Google Scholar

    [31] 宋英昕, 宋明春, 丁正江, 等. 胶东金矿集区深部找矿重要进展及成矿特征[J]. 黄金科学技术, 2017, 25(3) : 4-18.

    Google Scholar

    [32] Chai P, Zhang H R, Dong L L, et al. Geology and ore-forming fluids of the Dayingezhuang gold deposit, Jiaodong Peninsula, eastern China: Implications for mineral exploration[J]. Journal of Geochemical Exploration, 2019, 204: 224-239. doi: 10.1016/j.gexplo.2019.06.001

    CrossRef Google Scholar

    [33] Chai P, Hou Z Q, Zhang H R, et al. Geology, Fluid Inclusion, and H- O-S-Pb Isotope Constraints on the Mineralization of the Xiejiagou Gold Deposit in the Jiaodong Peninsula[J]. Geofluids, 2019, 2019: 1-23.

    Google Scholar

    [34] Chai P, Hou Z Q, Zhang Z Y. Geology, Fluid Inclusion and Stable Isotope Constraints on the Fluid Evolution and Resource Potential of the Xiadian Gold Deposit, Jiaodong Peninsula[J]. Resource Geology, 2017, 67(3) : 341-359. doi: 10.1111/rge.12134

    CrossRef Google Scholar

    [35] Guo L N, Deng J, Yang L Q, et al. Gold deposition and resource potential of the Linglong gold deposit, Jiaodong Peninsula: Geochemical comparison of ore fluids[J]. Ore Geology Reviews, 2020, 120: 1-17.

    Google Scholar

    [36] 万多. 山东胶东地区招平断裂带北段金矿成矿规律与成矿预测[D]. 吉林大学博士学位论文, 2014.

    Google Scholar

    [37] 张义东. 胶东水旺庄金矿床深部地质特征及成因机制研究[D]. 河北地质大学硕士学位论文, 2018.

    Google Scholar

    [38] 孙丰月, 金巍, 李碧乐. 关于脉状热液金矿床成矿深度的思考[J]. 长春科技大学学报, 2000, 30(S1) : 27-29.

    Google Scholar

    [39] 张华锋, 李胜荣, 翟明国, 等. 胶东半岛早白垩世地壳隆升剥蚀及其动力学意义[J]. 岩石学报, 2006, 22(2) : 285-295.

    Google Scholar

    [40] 王建平, 刘俊, 刘家军, 等. 黑云母全铝压力计估算胶东西北部玲珑花岗质杂岩剥蚀程度[J]. 矿物学报, 2009, 29(S1) : 481-482.

    Google Scholar

    [41] 柳振江, 王建平, 郑德文, 等. 胶东西北部金矿剥蚀程度及找矿潜力和方向——来自磷灰石裂变径迹热年代学的证据[J]. 岩石学报, 2010, 26(12) : 3597-3611.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(2)

Article Metrics

Article views(995) PDF downloads(89) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint