2022 Vol. 41, No. 1
Article Contents

XIANG Wenshuai, ZHAO Kai, ZENG Guoping, LI Fulin, WANG Jianxiong, HU Peng, ZHANG Zicheng. Geology of VMS deposits in Northeast Africa and their research progress[J]. Geological Bulletin of China, 2022, 41(1): 129-140. doi: 10.12097/j.issn.1671-2552.2022.01.010
Citation: XIANG Wenshuai, ZHAO Kai, ZENG Guoping, LI Fulin, WANG Jianxiong, HU Peng, ZHANG Zicheng. Geology of VMS deposits in Northeast Africa and their research progress[J]. Geological Bulletin of China, 2022, 41(1): 129-140. doi: 10.12097/j.issn.1671-2552.2022.01.010

Geology of VMS deposits in Northeast Africa and their research progress

More Information
  • The Northeast Africa mainly includes Egypt, Sudan, Eritrea and Ethiopia, hosting rich mineral resources such as gold, silver, copper and zinc, and the main types of mineral deposits are VMS.Since the discovery of large VMS deposits such as Ariab and Bisha, mining companies from various countries have been conducting exploration and mining in this region, and the discovery of a large number of new deposits elevate the mineral resources of copper and gold.The summary of exploration and research progress of VMS deposits in those countries can provide references for enterprises that carry out mineral exploration and investment in this region.The host rocks of VMS deposits in this region are mainly bimodal felsic volcanic rocks, which indicate a certain correlation with the volcanic arc rock combination, and the main controlling factors for the deposits are shear zones, folds and characteristic metamorphosed volcanic-sedimentary series.The ages of these deposits are mainly concentrated in three stages ranging from 890 Ma to 695 Ma, and were formed in two types of paleotectonic environments, island arc on the margins of convergent plates and back-arc basin in the oceans.Most deposits experienced near-surface oxidation and supergene enrichment, with gold and copper relatively enriched near surface.The discovered VMS deposits are mainly distributed in the north-central part of the Arabian Nubian Shield, including Barka, Gabgaba, Eastern Desert terranes, and the prospects are near the Barka, Nakasib, Keraf, and Nugrus suture zones.

  • 加载中
  • [1] Johnson P R, Zoheir B A, Ghebreab W, et al. Gold-bearing volcanogenic massive sulfides and orogenic-gold deposits in the Nubian Shield[J]. South African Journal of Geology, 2017, 120(1): 63-76. doi: 10.25131/gssajg.120.1.63

    CrossRef Google Scholar

    [2] 彭自栋, 王长乐, 赵刚, 等. 前寒武纪VMS与BIF铁矿床共生组合研究进展[J]. 矿床地质, 2017, 36(4): 905-920.

    Google Scholar

    [3] Piercey S J. An overview of petrochemistry in the regional exploration for volcanogenic massive sulphide(VMS)deposits[J]. Geochemistry: Exploration, Environment, Analysis, 2010, 10(2): 119-136. doi: 10.1144/1467-7873/09-221

    CrossRef Google Scholar

    [4] 毛景文, 张作衡, 王义天, 等. 国外主要矿床类型、特点及找矿勘查[M]. 北京: 地质出版社, 2012.

    Google Scholar

    [5] Barrie C T, Nielsen F W, Aussant C H. The Bisha volcanic-associated massive sulfide deposit, western Nakfa Terrane, Eritrea[J]. Economic Geology, 2007, 102(4): 717-738. doi: 10.2113/gsecongeo.102.4.717

    CrossRef Google Scholar

    [6] 蒋文程, 张有军, 谭宁, 等. 厄立特里亚阿斯马拉Asmara铜金多金属成矿带研究进展[J]. 矿产勘查, 2017, 8(4): 700-707. doi: 10.3969/j.issn.1674-7801.2017.04.023

    CrossRef Google Scholar

    [7] Be'eri-Shlevin Y, Katzir Y, Whitehouse M J, et al. Contribution of pre Pan-African crust to formation of the Arabian Nubian Shield: New secondary ionization mass spectrometry U-Pb and O studies of zircon[J]. Geology, 2009, 37: 899-902.

    Google Scholar

    [8] Stern R J. Arc Assembly and Continental Collision in the Neoproterozoic East African Orogen: Implications for the Consolidation of Gondwanaland[J]. Annual Review of Earth and Planetary Sciences, 1994, 22(1): 319-351. doi: 10.1146/annurev.ea.22.050194.001535

    CrossRef Google Scholar

    [9] Hargrove U S, Stern R J, Kimura J I, et al. How juvenile is the Arabian-Nubian shield? Evidence from Nd isotopes and pre-Neoproterozoic inherited zircon in the Bi'r Umq suture zone, Saudi Arabia[J]. Earth & Planetary Science Letters, 2006, 252(3/4): 308-326.

    Google Scholar

    [10] Johnson P R, Andresen A, Collins A S, et al. Late Cryogenian-Ediacaran history of the Arabian-Nubian Shield: A review of depositional, plutonic, structural, and tectonic events in the closing stages of the northern East African Orogen[J]. Journal of African Earth Sciences, 2011, 61(3): 167-232. doi: 10.1016/j.jafrearsci.2011.07.003

    CrossRef Google Scholar

    [11] Stern R J, Ali K A, Abdelsalam M G, et al. U-Pb Zircon geochronology of the eastern part of the Southern Ethiopian Shield[J]. Precambrian Research, 2012, 206/207: 159-167. doi: 10.1016/j.precamres.2012.02.008

    CrossRef Google Scholar

    [12] Kröner A, Stern R J. AFRICA | Pan-African Orogeny[C]//Encyclopedia of Geology. Elsevier, 2005: 1-12.

    Google Scholar

    [13] Abdelsalam M, Stern B. Sutures and shear zones in the Arabian-Nubian Shield[J]. Journal of African Earth Sciences, 1996, 23: 289-310. doi: 10.1016/S0899-5362(97)00003-1

    CrossRef Google Scholar

    [14] Drury S A, Berhe S M. Accretion tectonics in northern Eritrea revealed by remotely sensed imagery[J]. Geological Magazine, 1993, 130: 170-190.

    Google Scholar

    [15] Zoheir B A, Johnson P R, Goldfarb R J, et al. Orogenic gold in the Egyptian Eastern Desert: Widespread gold mineralization in the late stages of Neoproterozoic orogeny[J]. Gondwana Research, 2019, 75: 184-217. doi: 10.1016/j.gr.2019.06.002

    CrossRef Google Scholar

    [16] Kusky T M, Abdelsalam M, Tucker R D, et al. Evolution of the East African and related orogens, and the assembly of Gondwana[J]. Precambrian Research, 2003, 123(2/4): 81-85.

    Google Scholar

    [17] Andersson U B, Ghebreab W, Teklay M. Crustal evolution and metamorphism in east-central Eritrea, south-east Arabian-Nubian Shield[J]. Journal of African Earth Sciences, 2006, 44: 45-65. doi: 10.1016/j.jafrearsci.2005.11.006

    CrossRef Google Scholar

    [18] Ali K A, Azer M K, Gahlan H A, et al. Age constraints on the formation and emplacement of Neoproterozoic ophiolites along the Allaqi-Heiani Suture, Southeastern Desert of Egypt[J]. Gondwana Research, 2010, 18: 583-595. doi: 10.1016/j.gr.2010.03.002

    CrossRef Google Scholar

    [19] Teklay M. Neoproterozoic arc-back-arc system analog to modern arcback-arc systems: evidence from tholeiite-boninite association, serpentinite mudflows, and across-arc geochemical trends in Eritrea, southern Arabian-Nubian shield[J]. Precambrian Research, 2006, 145: 81-92. doi: 10.1016/j.precamres.2005.11.015

    CrossRef Google Scholar

    [20] Grenne T, Pedersen R B, Bjerkgård T, et al. Neoproterozoic evolution of Western Ethiopia: igneous geochemistry, isotope systematics and U-Pb ages[J]. Geological Magazine, 2003, 140: 373-395. doi: 10.1017/S001675680300801X

    CrossRef Google Scholar

    [21] Tsige L. Metamorphism and gold mineralization of the Kenticha-Katawicha area; Adola belt, southern Ethiopia[J]. Journal of African Earth Sciences, 2006, 45: 16-33. doi: 10.1016/j.jafrearsci.2006.01.002

    CrossRef Google Scholar

    [22] Botros N S. Ore Deposits in the Arabian-Nubian Shield[C]//Hamimi Z, Fowler A R, Liégeois J P, et al. The Geology of the Arabian-Nubian Shield. Springer International Publishing, 2021: 585-631.

    Google Scholar

    [23] Woldemichael B W, Kimura J I, Dunkley D J, et al. SHRIMP U-Pb zircon geochronology and Sr-Nd isotopic systematic of the Neoproterozoic Ghimbi-Nedjo mafic to intermediate intrusions of Western Ethiopia: a record of passive margin magmatism at 855 Ma?[J]. International Journal of Earth Sciences, 2009, 99: 1773-1790.

    Google Scholar

    [24] Johnson N. NI 43-101 Independent Technical Report Block 14 project, Republic of the Sudan[EB/OL]. (2014-05-11)[2021-09-01]. https://orcagold.com/projects/block-14-gold-project/technical-studies/.

    Google Scholar

    [25] Ghebreab W, Greiling R O, Solomon S. Structural setting of Neoproterozoic mineralization, Asmara district, Eritrea[J]. Journal of African Earth Sciences, 2009, 55(5): 219-235. doi: 10.1016/j.jafrearsci.2009.05.001

    CrossRef Google Scholar

    [26] Barrie C T, Hannington M D. Volcanic-associated massive sulfide deposits: processes and examples in modern and ancient settings: introduction[J]. Rev. Econ. Geol., 1999, 8: 1-11

    Google Scholar

    [27] Neil S. Asmara Project Feasibility Study NI43-101 Technical Report[Z]. SENET(Pty)Limited, 2013: 1-150.

    Google Scholar

    [28] 成曦晖, 徐九华, 王建雄, 等. 厄立特里亚阿斯马拉VMS矿床S、Pb同位素对成矿物质来源的约束[J]. 中国有色金属学报, 2017, 27(4): 795-810.

    Google Scholar

    [29] Sandy M A, Christopher M, David G T. NI43-101 Technical Report on a Mineral Resource Estimate at the Terakimti Prospect, Harvest Property[EB/OL]. (2014-02-14)[2021-09-01]. https://eastafricametals.com/harvest/#reports.

    Google Scholar

    [30] East Africa Metals. THE Harvest Project[EB/OL]. (2015-10-18)[2021-09-01]. https://eastafricametals.com/harvest/.

    Google Scholar

    [31] East Africa Metals. THE Adyabo Project[EB/OL]. (2016-05-31)[2021-09-01]. https://eastafricametals.com/adyabo/.

    Google Scholar

    [32] 韩世礼. 埃塞俄比亚施瑞地区VMS型矿床成矿机制及成矿规律研究[D]. 中南大学博士学位论文, 2013.

    Google Scholar

    [33] Gribble P, Melnyk J, Munro P. Bisha Mine, Eritrea, Africa. NI 43-101 Techncial Report[Z]. Nevsun Resources Ltd., 2013.

    Google Scholar

    [34] Teklay M, Haile T, Kröner A, et al. A Back-arc Palaeotectonic Setting for the Augaro Neoproterozoic Magmatic Rocks of Western Eritrea[J]. Gondwana Research, 2003, 6(4): 629-640. doi: 10.1016/S1342-937X(05)71012-1

    CrossRef Google Scholar

    [35] Bosc R, Tamlyn N, Kachrillo J J. The Hassai Mine project VMS resources update Red Sea State, Sudan. NI 43-101 Technical Report[Z]. La Mancha Resources Inc, 2012.

    Google Scholar

    [36] Plyley B, Kachrillo J J, Bennett M, et al. Hassai South Cu-Au VMS deposit, Sudan, resource estimate, NI 43-101 Technical Report[Z]. La Mancha Resources Inc., 2009.

    Google Scholar

    [37] Matt B. NI 43-101 independent technical report Hamama west deposit, Abu Marawat concession, Arab Republic of Egypt[EB/OL]. (2017-01-01)[2021-09-01]. https://www.atonresources.com/investors/reports-and-presentations/.

    Google Scholar

    [38] Javier Orduña. Gold and base metal deposits of the Abu Marawat Concession, Egypt[EB/OL]. (2018-03-04)[2021-09-01]. https://www.atonresources.com/investors/reports-and-presentations/.

    Google Scholar

    [39] Perelló J, Sillitoe R H, Brockway H, et al. Metallogenic inception of the Arabian-Nubian Shield: Daero Paulos porphyry copper prospect, Eritrea[J]. Gondwana Research, 2020, 88: 106-125. doi: 10.1016/j.gr.2020.06.021

    CrossRef Google Scholar

    [40] Faisal M, Yang X, Khalifa I H, et al. Geochronology and geochemistry of Neoproterozoic Hamamid metavolcanics hosting largest volcanogenic massive sulfide deposits in Eastern Desert of Egypt: Implications for petrogenesis and tectonic evolution[J]. Precambrian Research, 2020, 344: 105751. doi: 10.1016/j.precamres.2020.105751

    CrossRef Google Scholar

    [41] Barrie C T, Abdalla M A F, Hamer R D. Volcanogenic Massive Sulphide-Oxide Gold Deposits of the Nubian Shield in Northeast Africa[C]//Bouabdellah M Slack J F. Mineral Deposits of North Africa. Cham. : Springer International Publishing(Mineral Resource Reviews), 2016: 417-435.

    Google Scholar

    [42] Ghebretensae G F, Yao H Z, Zhao J H, et al. Neoproterozoic magmatism in the southern Arabian-Nubian Shield: implications for petrogenesis and tectonic setting[J]. Arabian Journal of Geosciences, 2019, 44: 6525-6545.

    Google Scholar

    [43] Ghebretensae G F, Yao H Z, Zhao K, et al. Petrogenesis and tectonic implications of the Neoproterozoic adakitic and A-type granitoids in the southern Arabian-Nubian shield[J]. Arabian Journal of Geosciences, 2019, 12(14): 428. doi: 10.1007/s12517-019-4575-x

    CrossRef Google Scholar

    [44] Avigad D, Stern R J, Beyth M, et al. Detrital zircon U-Pb geochronology of Cryogenian diamictites and lower Paleozoic sandstone in Ethiopia(Tigrai): age constraints on Neoproterozoic glaciation and crustal evolution of the southern Arabian-Nubian Shield[J]. Precambrian Research, 2007, 154: 88-106. doi: 10.1016/j.precamres.2006.12.004

    CrossRef Google Scholar

    [45] Ali K A, Azer M K, Gahlan H A, et al. Age constraints on the formation and emplacement of Neoproterozoic ophiolites along the Allaqi-Heiani Suture, Southeastern Desert of Egypt[J]. Gondwana Research, 2010, 18: 583-595. doi: 10.1016/j.gr.2010.03.002

    CrossRef Google Scholar

    [46] Stern R J, Avigad D, Miller N R, et al. Geological Society of Africa Presidential Review #10: Evidence for the Snowball Earth Hypothesis in the Arabian-Nubian Shield and the East African Orogen[J]. Journal of African Earth Sciences, 2006, 44: 1-20. doi: 10.1016/j.jafrearsci.2005.10.003

    CrossRef Google Scholar

    [47] Goldfarb R J, Groves D I, Gardoll S. Orogenic gold and geologic time: a global synthesis[J]. Ore Geology Reviews, 2001, 18: 1-75. doi: 10.1016/S0169-1368(01)00016-6

    CrossRef Google Scholar

    [48] Fritz H, Abdelsalam M, Ali K A, et al. Orogen styles in the East African Orogen: a review of the Neoproterozoic to Cambrian tectonic evolution[J]. Journal of African Earth Sciences, 2013, 86: 65-106. doi: 10.1016/j.jafrearsci.2013.06.004

    CrossRef Google Scholar

    [49] Tornos F, Peter J M, Allen R, et al. Controls on the siting and style of volcanogenic massive sulphide deposits[J]. Ore Geology Reviews, 2015, 68: 142-163. doi: 10.1016/j.oregeorev.2015.01.003

    CrossRef Google Scholar

    [50] 李文渊. 块状硫化物矿床的类型、分布和形成环境[J]. 地球科学与环境学报, 2007, 4: 331-344. doi: 10.3969/j.issn.1672-6561.2007.04.001

    CrossRef Google Scholar

    [51] 侯增谦, 韩发, 夏林圻, 等. 现代与古代海底热水成矿作用——以若干火山成因块状硫化物矿床为例[M]. 北京: 地质出版社, 2003: 1-11.

    Google Scholar

    [52] Herrington R, Maslennikov V, Zaykov V, et al. Classification of VMS deposits: Lessons from the South Uralides[J]. Ore Geology Reviews, 2005, 27(1/4): 203-237.

    Google Scholar

    [53] 王登红. 块状硫化物矿床的地球化学找矿标志[J]. 地质科技情报, 1994, (2): 81-86.

    Google Scholar

    [54] Genna D, Gaboury D. Use of semi-volatile metals as a new vectoring tool for VMS exploration: Example from the Zn-rich McLeod deposit, Abitibi, Canada[J]. Journal of Geochemical Exploration, 2019, 207: 106358. doi: 10.1016/j.gexplo.2019.106358

    CrossRef Google Scholar

    [55] Feltrin L, Bertelli M. Using Clustered Heat Maps in Mineral Exploration to Visualize Volcanic-Hosted Massive Sulfide Alteration and Mineralization[J]. Natural Resources Research, 2020, 29(1): 311-344. doi: 10.1007/s11053-019-09586-2

    CrossRef Google Scholar

    [56] Hendrickson M D. Geologic interpretation of aeromagnetic and chemical data from the Oaks Belt, Wabigoon subprovince, Minnesota: implications for Au-rich VMS deposit exploration[J]. Canadian Journal of Earth Sciences, 2015, 53: 176-188.

    Google Scholar

    [57] 甘凤伟, 王京彬, 朱思才, 等. 埃塞俄比亚北部VMS型铜多金属矿快速勘查方法[J]. 矿产勘查, 2018, 9(8): 1611-1621. doi: 10.3969/j.issn.1674-7801.2018.08.019

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(2)

Article Metrics

Article views(1827) PDF downloads(70) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint