2022 Vol. 41, No. 1
Article Contents

SUN Hongwei, REN Junping, WANG Jie, WU Xingyuan, TANG Wenlong, GU Alei, ZUO Libo. Metallogenic regularity and resource potential of manganese deposits in southern Africa[J]. Geological Bulletin of China, 2022, 41(1): 60-71. doi: 10.12097/j.issn.1671-2552.2022.01.005
Citation: SUN Hongwei, REN Junping, WANG Jie, WU Xingyuan, TANG Wenlong, GU Alei, ZUO Libo. Metallogenic regularity and resource potential of manganese deposits in southern Africa[J]. Geological Bulletin of China, 2022, 41(1): 60-71. doi: 10.12097/j.issn.1671-2552.2022.01.005

Metallogenic regularity and resource potential of manganese deposits in southern Africa

More Information
  • As an important metal, manganese is widely used in various industrial fields.The total amount of manganese resources in the world is abundant, but its distribution is extremely uneven, mainly distributed in South Africa, Ukraine, Brazil, Australia and other countries.Manganese resources in China are characterized by large tonnage, low tenor, and difficulty in mining.In order to meet domestic demand, China needs to import a large amount of manganese ore from overseas every year.Southern Africa is rich in manganese resources, mainly consisting of four metallogenic types, namely marine sedimentary metamorphic type, marine sedimentary type, hydrothermal type and supergene type.Among them, the marine sedimentary metamorphic type and marine sedimentary type are the most important, and they are further divided into BIF rocks-hosted Mn deposit, black shale-hosted Mn deposit and silicon-mud-limestone-hosted Mn deposits based on the ore-bearing rocks.The metallogenic epoch of primary manganese deposits is mainly concentrated in 2.2~2.0 Ga, which is coupled with Eburnean orogeny.Spatially, it is mainly distributed on the edge of ancient landmass, and the metallogenic background is mainly back-arc basin and marginal basin.The current southern Africa is a typical case with favorable metallogenic geological conditions, overall low level of prospecting and exploration, and huge potential of manganese resources.

  • 加载中
  • [1] 严旺生, 高海亮. 世界锰矿资源及锰矿业发展[J]. 中国锰业, 2009, 3: 14-19.

    Google Scholar

    [2] 丛源, 董庆吉, 肖克炎, 等. 中国锰矿资源特征及潜力预测[J]. 地学前缘, 2018, 25(3) : 118-137.

    Google Scholar

    [3] Beukes N J, Burger A M, Gutzmer J. Fault-controlled hydrothermal alteration of Palaeoproterozoic manganese ore in Wessels mine, Kalahari manganese Field[J]. South African journal of geology, 1995, 98: 430-451.

    Google Scholar

    [4] Beukes N J, Gutzmer J. Origin and paleoenvironmental significance of major iron formations at the Archaean-Paleo-proterozoic boundary[J]. Reviews in Economic Geology, 2008, 15: 5-47.

    Google Scholar

    [5] Kuleshov V N. Manganese deposits: Communication 2 Major epochs and phases of manganese accumulation in the Earth's history[J]. Lithology and Mineral Resources, 2011, 46(6) : 546. doi: 10.1134/S0024490211060095

    CrossRef Google Scholar

    [6] Kuleshov V N, Zhegallo E A, Shkol'nik E L. Evolution of manganese ore genesis in the Earth's geological history and the role of the biosphere[J]. Doklady Earth Sciences, 2011, 441(2) : 1611-1615. doi: 10.1134/S1028334X1112004X

    CrossRef Google Scholar

    [7] Weber F. Genesis and supergene evolution of the Precambrian sedimentary manganese deposit at Moanda(Gabon)[J]. Genesis of Precambrian Iron and Manganese Deposits, 1973, 9: 307-322.

    Google Scholar

    [8] De Putter T, Ruffet G, Yans J, et al. The age of supergene manganese deposits in Katanga and its implications for the Neogene evolution of the African Great Lakes Region[J]. Ore Geology Reviews, 2015, 71: 350-362. doi: 10.1016/j.oregeorev.2015.06.015

    CrossRef Google Scholar

    [9] 雷晓力, 胡永达, 杜轶伦, 等. 锰矿资源现状及开发利用思考[J]. 中国矿业, 2015, 24(S1) : 27-29.

    Google Scholar

    [10] 孙宏伟, 王杰, 任军平, 等. 全球锰资源现状及对我国可持续发展建议[J]. 矿产保护与利用, 2020, 40(6) : 169-174.

    Google Scholar

    [11] USGS. Mineral Commodity Summaries[EB/OL]. (2021-01-31) [2021-09-10]. https://minerals.usga.gov/minerals/pubs/commodity/manganese/mcs-2020-manganese.

    Google Scholar

    [12] 王云山, 李佐虎, 李浩然. 中国海底锰结核处理技术研究概况[J]. 中国锰业, 2006, 24(1) : 17-20. doi: 10.3969/j.issn.1002-4336.2006.01.005

    CrossRef Google Scholar

    [13] 付勇, 徐志刚, 裴浩翔, 等. 中国锰矿成矿规律初探[J]. 地质学报, 2014, 88(12) : 2192-2207.

    Google Scholar

    [14] 刘陟娜, 张新元, 许虹, 等. 境外锰矿资源分布现状与中资企业勘查开发建议[J]. 中国矿业, 2015, 24(8) : 8-15. doi: 10.3969/j.issn.1004-4051.2015.08.002

    CrossRef Google Scholar

    [15] SNL: Commodity Profile-Price Chart[EB/OL]. (2020-09-30)[2021-06-10]. https://platform.Marketintelligence.spglobal.com/web/client?auth=inherit#industry/ top Producing Companies.

    Google Scholar

    [16] Corather L A. Manganese(advance release). U.S. Geological Survey 2012 Minerals Yearbook[M]. U.S. Department of the Interior, 2014: 1-47.

    Google Scholar

    [17] 叶连俊, 范德廉, 杨培基. 中国锰矿床[M]. 北京: 地质出版社, 1994: 80-552.

    Google Scholar

    [18] 姚培慧, 林镇泰, 杜春林, 等. 中国锰矿志[M]. 北京: 冶金工业出版社, 1995.

    Google Scholar

    [19] Kunzman M, Gutzmer J, Beukes N J, et al. Depositional environment and lithostratigraphy of the Paleoproterozoic Mooidraai Formation, Kalahari manganese field, South Africa[J]. South African Journal of Geology, 2014, 117: 173-192. doi: 10.2113/gssajg.117.2.173

    CrossRef Google Scholar

    [20] Cairncross B, Beukes N J. The Kalahari manganese field[M]. Assore: Johannesburg, 2013: 1-384.

    Google Scholar

    [21] Gutzmer J, Beukes N J. Karst-hosted fresh water Palaeoproterozoic manganese deposits, Postmasburg, South Africa[J]. Economic Geology, 1996, 91: 1435-1454. doi: 10.2113/gsecongeo.91.8.1435

    CrossRef Google Scholar

    [22] Bühn B, Stansistreet I G, Okrusch M. Lata Proterozic outer shelf manganese and iron deposits at Otjosondu(Namibia) related to the Damaran oceanic opening[J]. Economic Geology, 1992, 87: 1393-1411. doi: 10.2113/gsecongeo.87.5.1393

    CrossRef Google Scholar

    [23] Weber F. Evolution of lateritic manganese deposits[M]. Springer, Berlin Heidelberg, 1997: 97-124.

    Google Scholar

    [24] De Putter T, Liégeois J P, Dewaele S, et al. Paleoproterozoic manganese and base metals deposits at Kisenge- Kamata(Katanga, DR Congo)[J]. Ore Geology Reviews, 2018, 96: 181-200. doi: 10.1016/j.oregeorev.2018.04.015

    CrossRef Google Scholar

    [25] Cheney E S, Barton J M, Brandl G. Extent and age of the Soutpansberg sequences of southern Africa[J]. South African Journal of Geology, 1990, 93(4) : 664-675.

    Google Scholar

    [26] Schaefer M, Gutzmer J, Beukes N J. Late Paleoproterozoic Mn-rich oncoids: Earliest evidence for microbially mediated Mn precipitation[J]. Geology, 2001, 29(3) : 835-838.

    Google Scholar

    [27] Gutzmer J, Schaefer M, Beukes N J. Red beb-hosted oncolitic manganese ore of the Paleoproterozoic Soutpansberg Group, Bronkhorstfontein, south Africa[J]. Economic Geology, 2002, 97: 1023-1039.

    Google Scholar

    [28] 孙宏伟, 王杰, 任军平, 等. 非洲中部加丹加—赞比亚地区锰矿床研究现状及找矿方向[J]. 矿产勘查, 2021, 12(2) : 390-400. doi: 10.3969/j.issn.1674-7801.2021.02.026

    CrossRef Google Scholar

    [29] Bekker A, Karhu J A, Eriksson K A, et al. A chemostratigraphy of Paleoproterozoic carbonate successions of the Wyoming craton: tectonic forcing or biogeochemical change?[J]. Precambrian Research, 2003, 120(3/4) : 279-325.

    Google Scholar

    [30] 赵璞. 赞比亚曼萨地区锰矿地质特征及找矿潜力分析[J]. 矿业工程, 2015, 4: 15-16.

    Google Scholar

    [31] Gutzmer J, Du Plooy A P, Beukes N J. Timing of supergene enrichment of low-grade sedimentary manganese ores in the Kalahari manganese field, South Africa[J]. Ore Geology Reviews, 2012, 47: 136-153. doi: 10.1016/j.oregeorev.2012.04.003

    CrossRef Google Scholar

    [32] Vafeasa N A, Blignauta L C, Viljoena K S. Arsenic-bearing manganese ore of the Mukulu enrichment in the Kalahari manganese field, South Africa: A new discrimination scheme for Kalahari manganese ore[J]. Ore Geology Reviews, 2019, 115: 103-146.

    Google Scholar

    [33] Gutzmer J, Beukes N J. Effects of mass transfer, compaction and secondary porosity on hydrothermal upgrading of Paleoproterzoic sedimentary manganese ore in the Kalahari manganese field, South Africa[J]. Mineralium Deposita, 1997, 32: 250-256. doi: 10.1007/s001260050090

    CrossRef Google Scholar

    [34] Gutzmer J, Beukes N J. Mineral paragenesis of the Kalahari manganese field, South Africa[J]. Ore Geology Reviews, 1996, 11: 405-428. doi: 10.1016/S0169-1368(96)00011-X

    CrossRef Google Scholar

    [35] Gutzmer J, Beukes N J. Fault-controlled metasomatic alteration of Earl proterozoic sedimentary manganese ores in the Kalahari manganese field, South Africa[J]. Economic Geology, 1995, 90: 823-844. doi: 10.2113/gsecongeo.90.4.823

    CrossRef Google Scholar

    [36] Beukes N J, Smit C A. New evidence for thrust faulting in Griqualand west, South Africa: Implication for stratigraphy and the age of red beds[J]. Transactions of the Geological Society of South Africa, 1987, 90: 378-394.

    Google Scholar

    [37] 常洪伦, 孔繁辉, 宋晓东, 等. 南非Postmasburg地区锰矿床地质特征及成因分析[J]. 地质论评, 2014, 60(3) : 580-590.

    Google Scholar

    [38] 李上森. 卡拉哈里锰矿田的火山-喷气成因[J]. 国外前寒武纪地质, 1996, 1: 53-54.

    Google Scholar

    [39] 常洪伦, 李建峰, 王江龙, 等. 南非Postmasburg锰矿田堆积型锰矿体地质特征及找矿方向[J]. 现代矿业, 2016, 5: 92-96.

    Google Scholar

    [40] 廖凤初, 周有希. 南非LOMOTENG锰矿矿床地质特征及找矿方向探讨[J]. 国土资源导刊, 2013, 1: 64-66.

    Google Scholar

    [41] Hoffman P F, Schrag D P. Snowball Earth[J]. Scientific American, 2000, 282: 68-75. doi: 10.1038/scientificamerican0100-68

    CrossRef Google Scholar

    [42] 廖芝华, 张祖飞. 纳米比亚奥乔宗蒂约巴地区铁锰矿地质特征[J]. 四川地质学报, 2017, 37(2) : 214-217. doi: 10.3969/j.issn.1006-0995.2017.02.009

    CrossRef Google Scholar

    [43] Marchandise H. Le gisement et les minerais de manganèse de Kisenge(Congo belge)[J]. Bull. Soc. Belge Géol., 1958, 67: 187-211.

    Google Scholar

    [44] Doyen L. The manganese ore deposit of Kisenge-Kamata(Western Katanga)[M]. Springer, Berlin Heidelberg, 1973: 93-100.

    Google Scholar

    [45] Delhal J, Liégeois J P. Le socle granito-gneissique du Shaba occidental(Zaïre) : Pétrographie et géochronologie[J]. Annales de la Société géologique de Belgique, 1982, 91(1) : 25-26.

    Google Scholar

    [46] Delhal J, Deutsch S, Denoiseux B. A Sm/Nd isotopic study of heterogeneous granulites from the Archean Kasai-Lomami gabbro-norite and charnockite complex(Zaire, Africa)[J]. Chemical Geology, 1986, 57(1/2) : 235-245.

    Google Scholar

    [47] Ledent D, Lay C, Delhal J. Premières données sur l'âge absolu des formations anciennes du 'socle' du Kasai(Congo méridional)[J]. Bull. Soc. Belge Géol., 1962, 71(2) : 223-237.

    Google Scholar

    [48] 左立波, 任军平, 王杰, 等. 赞比亚班韦乌卢地块花岗岩地球化学特征、锆石U-Pb年龄及Lu-Hf同位素组成[J]. 地质调查与研究, 2020, 43(1) : 30-41. doi: 10.3969/j.issn.1672-4135.2020.01.004

    CrossRef Google Scholar

    [49] 任军平, 王杰, 古阿雷, 等. 赞比亚东北部正长花岗岩的锆石U-Pb年龄和Lu-Hf同位素特征[J]. 地质调查与研究, 2019, 42(3) : 161-165. doi: 10.3969/j.issn.1672-4135.2019.03.001

    CrossRef Google Scholar

    [50] 孙宏伟, 王杰, 任军平, 等. 班韦乌卢地块中部变质表壳岩碎屑锆石U-Pb年代学、Hf同位素研究及其构造意义[J]. 地质学报, 2021, 95(4) : 1245-1259. doi: 10.3969/j.issn.0001-5717.2021.04.020

    CrossRef Google Scholar

    [51] 孙宏伟, 王杰, 任军平, 等. 南部非洲花岗岩型与伟晶岩型钽矿床地质特征[J]. 地质论评, 2021, 67(1) : 265-278.

    Google Scholar

    [52] 孙宏伟, 王杰, 任军平, 等. 中非卢菲里安地区铀矿化特征与资源潜力分析[J]. 吉林大学学报(地球科学版), 2020, 50(6) : 1660-1674.

    Google Scholar

    [53] Sun H W, Ren J P, Wang J, et al. Age and geochemistry of the granitoid from the Lunte area, Northeastern Zambia: Implications for magmatism of the Columbia supercontinent[J]. China Geology, 2021, doi: 10.31035/cg2021048.

    CrossRef Google Scholar

    [54] 任军平, 左立波, 许康康, 等. 赞比亚北部班韦乌卢地块演化及矿产资源研究现状[J]. 地质论评2016, 62(4) : 979-996.

    Google Scholar

    [55] 古阿雷, 王杰, 任军平, 等. 赞比亚中部泛非期Hook岩基地质特征及成矿潜力分析[J]. 地质调查与研究, 2020, 43(1) : 63-80. doi: 10.3969/j.issn.1672-4135.2020.01.007

    CrossRef Google Scholar

    [56] 孙宏伟, 王杰, 任军平, 等. 赞比亚东北部姆波洛科索盆地沉积地层特征[J]. 地质论评, 2019, 65(1) : 232-245.

    Google Scholar

    [57] 阴江宁, 肖克炎. 中国锰矿资源潜力分析及成矿预测[J]. 中国地质, 2014, 41(5) : 1424-1437. doi: 10.3969/j.issn.1000-3657.2014.05.002

    CrossRef Google Scholar

    [58] Kuleshov V. Isotope Geochemistry: The origin and formation of manganese rocks and ores[M]. London: British Library Cataloguing, 2016.

    Google Scholar

    [59] 凃光炽. 我国南方几个特殊的热水沉积矿床[C]//中国矿床学——纪念谢家荣诞辰90周年文集. 北京: 学术书刊出版社, 1989: 189-198.

    Google Scholar

    [60] Frost K S, Master S, Viljoen R P, et al. The great mineral fields of Africa introduction[J]. Episodes Journal of International Geoscience, 2016, 39(2) : 285-318.

    Google Scholar

    [61] Bandopadhay P C. Proterzoic microfossils from manganese orebody, India[J]. Nature, 1989, 339: 376-378. doi: 10.1038/339376a0

    CrossRef Google Scholar

    [62] Oswald J. The biogeochemical origin of the Groote Eylant manganese ore pisoliths and ooloths, northern Australia[J]. Ore Geology Reviews, 1990, 5: 469-490. doi: 10.1016/0169-1368(90)90048-R

    CrossRef Google Scholar

    [63] Zhao G, Cawood P A, Wilde S A, et al. Review of global 2.1-1.8 Ga orogens: Implications for a pre-Rodinia supercontinent[J]. Earth-Science Reviews, 2002, 59: 125-162. doi: 10.1016/S0012-8252(02)00073-9

    CrossRef Google Scholar

    [64] Meert J G. What is in a name? the Columbia(Paleopangaea/Nuna) supercontinent[J]. Gonwana Research, 2012, 21: 987-993. doi: 10.1016/j.gr.2011.12.002

    CrossRef Google Scholar

    [65] Reddy S M, Evans D A D. Palaeoproterozoic supercontinents and global evolution: correlations from core to atmosphere[J]. Geological Society of London, Special Publication, 2009, 323: 1-26. doi: 10.1144/SP323.1

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(1)

Article Metrics

Article views(1694) PDF downloads(29) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint