2022 Vol. 41, No. 1
Article Contents

HU Peng, REN Junping, XIANG Peng, GU Alei, WANG Jianxiong, WANG Jie, WU Datian, XIANG Wenshuai, SUN Kai, ZHAO Kai, LIU Xiaoyang, JIANG Junsheng, ZENG Wei, ZENG Guoping, ZHANG Hang, LIU Jiangtao, ZHOU Zuomin. Division of tectonic units in African continent[J]. Geological Bulletin of China, 2022, 41(1): 1-18. doi: 10.12097/j.issn.1671-2552.2022.01.001
Citation: HU Peng, REN Junping, XIANG Peng, GU Alei, WANG Jianxiong, WANG Jie, WU Datian, XIANG Wenshuai, SUN Kai, ZHAO Kai, LIU Xiaoyang, JIANG Junsheng, ZENG Wei, ZENG Guoping, ZHANG Hang, LIU Jiangtao, ZHOU Zuomin. Division of tectonic units in African continent[J]. Geological Bulletin of China, 2022, 41(1): 1-18. doi: 10.12097/j.issn.1671-2552.2022.01.001

Division of tectonic units in African continent

More Information
  • Africa has a long history of geological evolution and rich in mineral resources. Based on the previous research results, this paper summarized the geological background, division of tectonic units and characteristics of major tectonic units. The African continent is composed of Tethys tectonic domain and Gondwana tectonic domain, most of which belong to the Gondwana tectonic domain. It is mainly composed of Archean to Paleoproterozoic crystalline basement, overlying strata and Pan-African tectonic belt. According to the geological background and tectonic evolution of the African continent, combined with previous studies, the African continent can be divided into 2 grade Ⅰ tectonic units, 10 grade Ⅱ tectonic units, 55 grade Ⅲ tectonic units. These different grades of tectonic units give a comprehensive overview of the geological characteristics of the African continent.

  • 加载中
  • [1] 任军平, 胡鹏, 王杰, 等. 非洲矿业发展概况[J]. 地质学报, 2021, 95(4) : 945-961. doi: 10.3969/j.issn.0001-5717.2021.04.002

    CrossRef Google Scholar

    [2] Petters S W. Regional Geology of Africa[M]. Springer Berlin Heidelberg, 1991.

    Google Scholar

    [3] Bouabdellah M, Slack J F. Geologic and Metallogenic Framework of North Africa[M]. Cham: Springer International Publishing, 2016: 3-81.

    Google Scholar

    [4] Kröner A, Hoffmann J E, Wong J M, et al. Archaean Crystalline Rocks of the Eastern Kaapvaal Craton[M]. Cham: Springer International Publishing, 2019: 1-32.

    Google Scholar

    [5] Vail J R. Pan-African crustal accretion in north-east Africa[J]. Journal of African Earth Sciences, 1983, 1(3) : 285-294.

    Google Scholar

    [6] Schofield D I, Horstwood M S A, Pitfield P E J, et al. U-Pb dating and Sm-Nd isotopic analysis of granitic rocks from the Tiris Complex: New constaints on key events in the evolution of the Reguibat Shield, Mauritania[J]. Precambrian Research, 2012, 204/205: 1-11. doi: 10.1016/j.precamres.2011.12.008

    CrossRef Google Scholar

    [7] 王杰, 任军平, 何胜飞, 等. 南非主要金矿集区研究现状及存在问题[J]. 地质论评, 2014, 60(5) : 997-1008.

    Google Scholar

    [8] 任军平, 许康康, 相振群, 等. 南非维特沃特斯兰德盆地绍斯迪普金矿床地质特征、成矿模式和找矿模型[J]. 地质通报, 2015, 34(6) : 1217-1226. doi: 10.3969/j.issn.1671-2552.2015.06.020

    CrossRef Google Scholar

    [9] 任军平, 王杰, 左立波, 等. 赞比亚北部省卡萨马西部石英闪长岩锆石U-Pb和Lu-Hf同位素及地球化学特征[J]. 地质学报, 2019, 93(11) : 2832-2846. doi: 10.3969/j.issn.0001-5717.2019.11.009

    CrossRef Google Scholar

    [10] 任军平, 王杰, 古阿雷, 等. 赞比亚东北部正长花岗岩的锆石U-Pb年龄和Lu-Hf同位素特征[J]. 地质调查与研究, 2019, 42(3) : 161-165. doi: 10.3969/j.issn.1672-4135.2019.03.001

    CrossRef Google Scholar

    [11] Rollinson H. Archaean crustal evolution in West Africa: A new synthesis of the Archaean geology in Sierra Leone, Liberia, Guinea and Ivory Coast[J]. Precambrian Research, 2016, 281: 1-12. doi: 10.1016/j.precamres.2016.05.005

    CrossRef Google Scholar

    [12] 左立波, 任军平, 王杰, 等. 赞比亚班韦乌卢地块花岗岩地球化学特征、锆石U-Pb年龄及Lu-Hf同位素组成[J]. 地质调查与研究, 2020, 43(1) : 30-41. doi: 10.3969/j.issn.1672-4135.2020.01.004

    CrossRef Google Scholar

    [13] 江思宏, 张莉莉, 刘翼飞, 等. 非洲大陆金矿分布特征与勘查建议[J]. 黄金科学技术, 2020, 28(4) : 465-478.

    Google Scholar

    [14] 姚华舟, 李建星, 吕鹏瑞, 等. 海上丝绸之路沿线陆域地质演化与成矿[J]. 华南地质与矿产, 2019, 35(1) : 1-19. doi: 10.3969/j.issn.1007-3701.2019.01.001

    CrossRef Google Scholar

    [15] Suwa K. Precambrian of African Continent[J]. Journal of African Studies, 1968, 1968(6) : 25-51. doi: 10.11619/africa1964.1968.25

    CrossRef Google Scholar

    [16] 任军平, 王杰, 刘晓阳, 等. 非洲中南部卢弗里安地区Cu-Co矿床研究进展[J]. 地质科技情报, 2013, 32(5) : 135-145.

    Google Scholar

    [17] Pique A, Michard A. Moroccan Hercynides; a synopsis; the Paleozoic sedimentary and tectonic evolution at the northern margin of West Africa[J]. American Journal of Science, 1989, 289(3) : 286-330. doi: 10.2475/ajs.289.3.286

    CrossRef Google Scholar

    [18] 熊利平, 王骏, 殷进垠, 等. 西非构造演化及其对油气成藏的控制作用[J]. 石油与天然气地质, 2005, (5) : 641-643. doi: 10.3321/j.issn:0253-9985.2005.05.014

    CrossRef Google Scholar

    [19] 姚华舟, 陈开旭, 王建雄, 等. 东非裂谷系统(EARS) 地幔柱成因的新生代火山作用地球化学标志[J]. 华南地质与矿产, 2018, 34(1) : 10-21. doi: 10.3969/j.issn.1007-3701.2018.01.002

    CrossRef Google Scholar

    [20] Snelling N J. Age Determinations on Three African Carbonatites[J]. Nature (London), 1965, 205(4970) : 491. doi: 10.1038/205491a0

    CrossRef Google Scholar

    [21] Schettino A, Macchiavelli C, Pierantoni P P, et al. Recent kinematics of the tectonic plates surrounding the Red Sea and Gulf of Aden[J]. Geophysical Journal International, 2016, 207(1) : 457-480. doi: 10.1093/gji/ggw280

    CrossRef Google Scholar

    [22] 吴兴源, 刘晓阳, 任军平, 等. 坦桑尼亚Panda山碳酸岩地球化学特征及岩石成因研究进展[J]. 地质调查与研究, 2019, 42(2) : 86-95. doi: 10.3969/j.issn.1672-4135.2019.02.002

    CrossRef Google Scholar

    [23] 向鹏, 王建雄, 吴发富. 摩洛哥伊米泰尔(Imiter) 浅成低温热液型银矿床地质特征与成因[J]. 华南地质与矿产, 2019, 35(1) : 117-124. doi: 10.3969/j.issn.1007-3701.2019.01.012

    CrossRef Google Scholar

    [24] 刘江涛, 吴发富, 王建雄, 等. 基于ArcGIS建模器的数据处理模型在摩洛哥地球化学填图中的应用[J]. 地质科技情报, 2017, 36(5) : 1-6.

    Google Scholar

    [25] 向文帅, 姜军胜, 雷义均, 等. 埃塞俄比亚西部布雷地区A型花岗岩成因及地质意义[J]. 地球科学, 2021, 46(7) : 2299-2310.

    Google Scholar

    [26] 裴荣富, 梅燕雄. 1:2500万世界大型超大型矿床成矿图[M]. 北京: 地质出版社, 2009.

    Google Scholar

    [27] 胡鹏, 曾国平, 刘江涛, 等. 西非铁矿资源现状及潜力分析[J]. 地质学报, 2021, 95(4) : 1306-1319. doi: 10.3969/j.issn.0001-5717.2021.04.025

    CrossRef Google Scholar

    [28] 任军平, 王杰, 刘晓阳, 等. 非洲中南部铜多金属矿床研究现状及找矿潜力分析[J]. 吉林大学学报(地球科学版), 2017, 47(4) : 1083-1103.

    Google Scholar

    [29] 何胜飞, 刘晓阳, 许康康, 等. 中东部非洲地质构造单元与成矿区带划分[J]. 地质与勘探, 2018, 54(6) : 1153-1170.

    Google Scholar

    [30] Kröner A, Stern R J. Pan-African Orogeny[C]//Encyclopedia of Geology (Second Edition). Oxford: Academic Press, 2005: 259-270.

    Google Scholar

    [31] Markwitz V, Hein K A A, Jessell M W, et al. Metallogenic portfolio of the West Africa craton[J]. Ore Geology Reviews, 2016, 78: 558-563. doi: 10.1016/j.oregeorev.2015.10.024

    CrossRef Google Scholar

    [32] Anhaeusser C R. Precambrian Crustal Evolution and Metallogeny of Southern Africa[C]//Naqvi S M. Developments in Precambrian Geology, Elsevier, 1990: 8, 123-156.

    Google Scholar

    [33] Clifford T N. Tectono-metallogenic units and metallogenic provinces of Africa[J]. Earth and Planetary Science Letters, 1966, 1(6) : 421-434. doi: 10.1016/0012-821X(66)90039-2

    CrossRef Google Scholar

    [34] 姜军胜, 胡鹏, 向文帅, 等. 埃塞俄比亚西部布雷地区类埃达克岩年代学、地球化学及对区域构造演化的指示[J]. 地质学报, 2021, 95(4) : 1260-1272. doi: 10.3969/j.issn.0001-5717.2021.04.021

    CrossRef Google Scholar

    [35] 雷义均, 王建雄, 姚华舟, 等. 东北非努比亚地盾金矿成矿地质特征与找矿标志[J]. 华南地质与矿产, 2019, 35(1) : 90-98. doi: 10.3969/j.issn.1007-3701.2019.01.009

    CrossRef Google Scholar

    [36] 刘晓阳, 王杰, 余金杰, 等. 中南部非洲的地质构造演化与矿产分布规律[J]. 地质找矿论丛, 2015, 30(S1) : 1-12. doi: 10.6053/j.issn.1001-1412.2015.S1.001

    CrossRef Google Scholar

    [37] Koffi G R, Kouamelan A N, Allialy M E, et al. Re-evaluation of Leonian and Liberian events in the geodynamical evolution of the Man-Leo Shield (West African Craton)[J]. Precambrian Research, 2020, 338: 105582. doi: 10.1016/j.precamres.2019.105582

    CrossRef Google Scholar

    [38] Béziat D, Dubois M, Debat P, et al. Gold metallogeny in the Birimian craton of Burkina Faso (West Africa)[J]. Journal of African Earth Sciences, 2008, 50(2) : 215-233.

    Google Scholar

    [39] Fagbohun B J, Omitogun A A, Bamisaiye O A, et al. Gold potential of the Pan African Trans-Sahara belt and prospect for further exploration[J]. Ore Geology Reviews, 2020, 116: 103260. doi: 10.1016/j.oregeorev.2019.103260

    CrossRef Google Scholar

    [40] Thomas R J, von Veh M W, Mccourt S. The tectonic evolution of southern Africa: an overview[J]. Journal of African Earth Sciences, 1993, 16(1) : 5-24.

    Google Scholar

    [41] Ganbat A, Tsujimori T, Boniface N, et al. Crustal evolution of the Paleoproterozoic Ubendian Belt (SW Tanzania) western margin: A Central African Shield amalgamation tale[J]. Gondwana Research, 2021, 91: 286-306. doi: 10.1016/j.gr.2020.12.009

    CrossRef Google Scholar

    [42] Kabete J M, Groves D I, Mcnaughton N J, et al. A new tectonic and temporal framework for the Tanzanian Shield: Implications for gold metallogeny and undiscovered endowment[J]. Ore Geology Reviews, 2012, 48: 88-124. doi: 10.1016/j.oregeorev.2012.02.009

    CrossRef Google Scholar

    [43] 吴发富, 王建雄, 刘江涛, 等. 磷矿的分布、特征与开发现状[J]. 中国地质, 2021, 48(1) : 82-101.

    Google Scholar

    [44] Michard A, Saddiqi O, Chalouan A, et al. Continental Evolution: The Geology of Morocco[M]. Berlin: Springer-Verlag, 2008.

    Google Scholar

    [45] Johnson P R, Andresen A, Collins A S, et al. Late Cryogenian-Ediacaran history of the Arabian-Nubian Shield: a review of depositional, plutonic, structural, and tectonic events in the closing stages of the northern East African Orogen[J]. Journal of African Earth Sciences, 2011, 61(3) : 167-232. doi: 10.1016/j.jafrearsci.2011.07.003

    CrossRef Google Scholar

    [46] Johnson P R. Post-amalgamation basins of the NE Arabian shield and implications for Neoproterozoic Ⅲ tectonism in the northern East African orogen[J]. Precambrian Research, 2003, 123(2) : 321-337.

    Google Scholar

    [47] Teklay M. Neoproterozoic arc-back-arc system: analog to modern arc-back-arc systems; evidence from tholeiite-boninite association, serpentinite mudflows and across-arc geochemical trends in Eritrea, southern Arabian-Nubian Shield[J]. Precambrian Research, 2006, 145(1/2) : 81-92.

    Google Scholar

    [48] 向文帅, 赵凯, 张紫程. 厄立特里亚Augaro金矿床碳氢氧硫同位素特征及其成因意义[J]. 地质学报, 2021, 95(4) : 1284-1291. doi: 10.3969/j.issn.0001-5717.2021.04.023

    CrossRef Google Scholar

    [49] 向文帅, 姜军胜, 赵凯. 应用地球化学块体法评价厄立特里亚金矿资源潜力[J]. 中国矿业, 2019, 28(12) : 176-182.

    Google Scholar

    [50] 刘江涛, 吴发富, 李福林, 等. 基于证据权模型的厄立特里亚金矿资源潜力评价[J]. 地质学报, 2021, 95(4) : 1292-1305. doi: 10.3969/j.issn.0001-5717.2021.04.024

    CrossRef Google Scholar

    [51] 向鹏, 王建雄, 姚华舟, 等. 厄立特里亚比萨(Bisha) VMS型多金属矿床的研究进展及认识[J]. 地质科技情报, 2013, 32(5) : 118-125.

    Google Scholar

    [52] 向鹏, 王建雄. 厄立特里亚Koka金矿地质特征及矿床类型[J]. 矿物学报, 2013, 33(S2) : 1067-1068.

    Google Scholar

    [53] Zhao K, Yao H, Wang J, et al. Genesis of the Koka gold deposit in Northwest Eritrea, NE Africa: Constraints from fluid inclusions and C-H-O-S isotopes[J]. Minerals, 2019, 9(4) : 201. doi: 10.3390/min9040201

    CrossRef Google Scholar

    [54] 赵凯, 姚华舟, 王建雄, 等. 厄立特里亚Koka金矿床成矿流体特征及其地质意义[J]. 矿床地质, 2018, 37(6) : 1337-1348.

    Google Scholar

    [55] 赵凯, 姚华舟, 王建雄, 等. 厄立特里亚Koka花岗岩锆石U-Pb年代学、地球化学特征及其地质意义[J]. 地球科学, 2020, 45(1) : 156-167.

    Google Scholar

    [56] Muhongo S. Neoproterozoic collision tectonics in the Mozambique Belt of East Africa: evidence from the Uluguru mountains, Tanzania[J]. Journal of African Earth Sciences, 1994, 19(3) : 153-168. doi: 10.1016/0899-5362(94)90058-2

    CrossRef Google Scholar

    [57] Abdelsalam M G, Stern R J. Sutures and shear zones in the Arabian- Nubian Shield[J]. Journal of African Earth Sciences, 1996, 23(3) : 289-310. doi: 10.1016/S0899-5362(97)00003-1

    CrossRef Google Scholar

    [58] Church W R, Abdelsalam M G, Berhe S M. Discussion of ophiolites in Northeast and East Africa: implications for Proterozoic crustal growth[J]. Journal of the Geological Society, 1991, 148(3) : 41-57.

    Google Scholar

    [59] Stern R J, Fritz H, Loizenbauer J. Crustal evolution in the East African Orogen: A neodymium isotopic perspective[J]. Journal of African Earth Sciences, 2002, 34(3/4) : 109-117.

    Google Scholar

    [60] Stern R J. Neoproterozoic (900-550 Ma) arc assembly and continental collision in the East Africa orogen : Implications for the consolidation of Gondwanaland[J]. Annual Review of Earth & Planetary Sciences, 1994, 22: 319-351.

    Google Scholar

    [61] Berhe S M. Ophiolites in Northeast and East Africa: implications for Proterozoic crustal growth[J]. Journal of the Geological Society, 1990, 147(1) : 41-57. doi: 10.1144/gsjgs.147.1.0041

    CrossRef Google Scholar

    [62] Kuster D. Granitoid-hosted Ta mineralization in the Arabian-Nubian Shield; ore deposit types, tectono-metallogenetic setting and petrogenetic framework[J]. Ore Geology Reviews, 2009, 35(1) : 68-86. doi: 10.1016/j.oregeorev.2008.09.008

    CrossRef Google Scholar

    [63] Guiraud R, Bosworth W, Thierry J, et al. Phanerozoic geological evolution of northern and central Africa; an overview[J]. Journal of African Earth Sciences, 2005, 43(1/3) : 83-143.

    Google Scholar

    [64] 李建英, 陈旭, 张宾, 等. 埃塞俄比亚欧加登盆地构造演化及有利区分析[J]. 特种油气藏, 2015, 22(1) : 26-30. doi: 10.3969/j.issn.1006-6535.2015.01.006

    CrossRef Google Scholar

    [65] 李建英, 陈旭, 胡永军, 等. 埃塞俄比亚欧加丹盆地石油地质特征及勘探潜力[J]. 石油天然气学报, 2014, 36(6) : 16-20. doi: 10.3969/j.issn.1000-9752.2014.06.004

    CrossRef Google Scholar

    [66] Abdelsalam M G, Liégeois J, Stern R J. The Saharan Metacraton[J]. Journal of African Earth Sciences, 2002, 34(3) : 119-136.

    Google Scholar

    [67] Le Heron D P, Howard J P. Sandstones, glaciers, burrows and transgressions; the lower Palaeozoic of Jabel az-Zalmah, Al Kufrah Basin, Libya[J]. Sedimentary geology, 2012, 245/246: 63-75. doi: 10.1016/j.sedgeo.2011.12.008

    CrossRef Google Scholar

    [68] Luening S, Craig J, Loydell D K, et al. Lower Silurian "hot shales" in North Africa and Arabia; regional distribution and depositional model[J]. Earth-Science Reviews, 2000, 49(1/4) : 121-200.

    Google Scholar

    [69] Luening S, Craig J, Mayouf J, et al. Petroleum source and reservoir rock re-evaluation in the Kufra Basin (SE Libya, NE Chad, NW Sudan)[M]. Amsterdam: Elsevier, 1998.

    Google Scholar

    [70] Moreau J. The Late Ordovician deglaciation sequence of the SW Murzuq Basin (Libya)[J]. Basin Research, 2011, 23(4) : 449-477. doi: 10.1111/j.1365-2117.2010.00499.x

    CrossRef Google Scholar

    [71] Bea F, Montero P, Anbar M A, et al. The Bir Safsaf Precambrian inlier of South West Egypt revisited: A model for ~1.5Ga T DM late Pan-African granite generation by crustal reworking[J]. lithos, 2012, 125(3) : 897-914.

    Google Scholar

    [72] Bea F, Montero P, Anbar M A, et al. SHRIMP dating and Nd isotope geology of the Archean terranes of the Uweinat-Kamil inlier, Egypt-Sudan-Libya[J]. Precambrian Research, 2011, 189(3/4) : 328-346.

    Google Scholar

    [73] Petters S W, Ekweozor C M. Petroleum geology of Benue Trough and southeastern Chad Basin, Nigeria[J]. AAPG Bulletin, 1982, 66(8) : 1141-1149.

    Google Scholar

    [74] Burke K. The Chad Basin: an active intra-continental basin[J]. Tectonophysics, 1976, 36(1/3) : 197-206.

    Google Scholar

    [75] Avbovbo A A, Ayoola E O, Osahon G A. Depositional and structural styles in Chad Basin of northeastern Nigeria[J]. AAPG Bulletin, 1986, 70(12) : 1787-1798.

    Google Scholar

    [76] 袁铎. 穆格莱德盆地石油地质特征[J]. 中国石油和化工标准与质量, 2014, 34(8) : 117-118. doi: 10.3969/j.issn.1673-4076.2014.08.089

    CrossRef Google Scholar

    [77] 张亚敏. 苏丹穆格莱德盆地苏夫焉凹陷含油气系统特征[J]. 石油实验地质, 2007, 29(6) : 572-576. doi: 10.3969/j.issn.1001-6112.2007.06.008

    CrossRef Google Scholar

    [78] 张光亚, 黄彤飞, 刘计国, 等. 非洲Muglad多旋回陆内被动裂谷盆地演化及其控油气作用[J]. 岩石学报, 2019, 35(4) : 1194-1212.

    Google Scholar

    [79] 童晓光, 窦立荣, 田作基, 等. 苏丹穆格莱特盆地的地质模式和成藏模式[J]. 石油学报, 2004, (1) : 19-24.

    Google Scholar

    [80] Davidson L, Beswetherick S, Craig J, et al. The structure, stratigraphy and petroleum geology of the Murzuq Basin, Southwest Libya[M]. Amsterdam: Elsevier, 1998.

    Google Scholar

    [81] Suayah I B, Miller J S, Miller B V, et al. Tectonic significance of Late Neoproterozoic granites from the Tibesti massif in southern Libya inferred from Sr and Nd isotopes and U-Pb zircon data[J]. Journal of African Earth Sciences, 2006, 44(4) : 561-570.

    Google Scholar

    [82] Gindy A R. General geology and petrography of the precambrian basement around Zalingei town, Darfur Province, Sudan[J]. Precambrian Research, 1984, 24(3) : 217-236.

    Google Scholar

    [83] Dill H G, Busch K, Blum N. Chemistry and origin of vein-like phosphate mineralization, Nuba Mountains (Sudan)[J]. Ore Geology Reviews, 1991, 6(1) : 9-24. doi: 10.1016/0169-1368(91)90029-7

    CrossRef Google Scholar

    [84] Schofield D I, Gillespie M R. A tectonic interpretation of "Eburnean Terrane" outliers in the Reguibat Shield, Mauritania[J]. Journal of African Earth Sciences, 2007, 49(4/5) : 179-186.

    Google Scholar

    [85] Montero P, Haissen F, Mouttaqi A, et al. Contrasting SHRIMP U/Pb zircon ages of two carbonatite complexes from the peri-cratonic terranes of the Reguibat Shield; implications for the lateral extension of the West African Craton[J]. Gondwana Research, 2016, 38: 238-250. doi: 10.1016/j.gr.2015.12.005

    CrossRef Google Scholar

    [86] 向鹏, 王建雄. 西非红土型铝土矿——我国铝矿资源保障新基地[J]. 华南地质与矿产, 2019, 35(1) : 125-127. doi: 10.3969/j.issn.1007-3701.2019.01.013

    CrossRef Google Scholar

    [87] 张海坤, 胡鹏, 姜军胜, 等. 世界铝土矿分布特点、主要类型与勘查开发现状[J]. 中国地质, 2020, 48(1) : 68-81.

    Google Scholar

    [88] 张继纯, 严永祥, 王建雄, 等. 西非矿产资源的地质背景及重要成矿分区[J]. 华南地质与矿产, 2019, 35(1) : 76-89. doi: 10.3969/j.issn.1007-3701.2019.01.008

    CrossRef Google Scholar

    [89] Deynoux M, Affaton P, Trompette R, et al. Pan-African tectonic evolution and glacial events registered in Neoproterozoic to Cambrian cratonic and foreland basins of West Africa[J]. Journal of African Earth Sciences, 2006, 46(5) : 397-426. doi: 10.1016/j.jafrearsci.2006.08.005

    CrossRef Google Scholar

    [90] Rooney A D, Selby D, Houzay J, et al. Re-Os geochronology of a Mesoproterozoic sedimentary succession, Taoudeni Basin, Mauritania; implications for basin-wide correlations and Re-Os organic-rich sediments systematics[J]. Earth and Planetary Science Letters, 2010, 289(3/4) : 486-496.

    Google Scholar

    [91] Makhous M, Galushkin Y, Lopatin N. Burial history and kinetic modeling for hydrocarbon generation; Part Ⅱ, Applying the GALO model to Saharan basins[J]. AAPG Bulletin, 1997, 81(10) : 1679-1699.

    Google Scholar

    [92] Black R, Latouche L, Liegeois J P, et al. Pan-African displaced terranes in the Tuareg Shield (central Sahara)[J]. Geology, 1994, 22(7) : 641-644. doi: 10.1130/0091-7613(1994)022<0641:PADTIT>2.3.CO;2

    CrossRef Google Scholar

    [93] Ennih N, Liegeois J P, Ennih N, et al. The boundaries of the West African Craton, with special reference to the basement of the Moroccan metacratonic Anti-Atlas Belt[J]. Geological Society Special Publication, 2008, 297(1) : 1-17. doi: 10.1144/SP297.1

    CrossRef Google Scholar

    [94] Leblanc M, Lancelot J R. Interpretation geodynamique du domaine pan-africain (Precambrien terminal) de l'Anti-Atlas (Maroc) a partir de donnees geologiques et geochronologiques[J]. Canadian Journal of Earth Sciences, 1980, 17(1) : 142-155. doi: 10.1139/e80-012

    CrossRef Google Scholar

    [95] El Hadi H, Simancas J F, Martínez-Poyatos D, et al. Structural and geochronological constraints on the evolution of the Bou Azzer Neoproterozoic ophiolite (Anti-Atlas, Morocco)[J]. Precambrian Research, 2010, 182(1) : 1-14.

    Google Scholar

    [96] Haworth, T R. Geophysics and geological correlation within the Appalachian-Caledonide-Hercynian-Mauritanide Orogens—An introduction[M]. Dordrecht: Springer Netherlands, 1983: 1-9.

    Google Scholar

    [97] Dallmeyer R D, Dallmeyer R D, Lecorche J P. Exotic terranes in the central-southern Appalachian Orogen and correlations with West Africa[M]. Berlin: Springer-Verlag, 1991.

    Google Scholar

    [98] Villeneuve M. Paleozoic basins in West Africa and the Mauritanide thrust belt[J]. Journal of African Earth Sciences, 2005, 43(1) : 166-195.

    Google Scholar

    [99] Dallmeyer R D, Lecorche J P. 40Ar/39Ar polyorogenic mineral age record within the central Mauritanide orogen, West Africa[J]. Tectonophysics, 1989, 177(1/3) : 81-107.

    Google Scholar

    [100] Clauer N, Dallmeyer R D, Lécorché J P. Age of the late Paleozoic tectonothermal activity in northcentral Mauritanide, West Africa[J]. Precambrian Research, 1991, 49(1) : 97-105.

    Google Scholar

    [101] Martyn J, Strickland C. Stratigraphy, structure and mineralisation of the Akjoujt area, Mauritania[J]. Journal of African Earth Sciences, 2004, 38(5) : 489-503. doi: 10.1016/j.jafrearsci.2004.03.004

    CrossRef Google Scholar

    [102] Davison I. Central Atlantic margin basins of North West Africa: Geology and hydrocarbon potential (Morocco to Guinea)[J]. Journal of African Earth Sciences, 2005, 43(1) : 254-274.

    Google Scholar

    [103] Pin C, Poidevin J L. U-Pb zircon evidence for a pan-african granulite facies metamorphism in the central african republic. a new interpretation of the high-grade series of the northern border of the congo craton[J]. Precambrian Research, 1987, 36(3) : 303-312.

    Google Scholar

    [104] Poidevin J. Boninite-like rocks from the Palaeoproterozoic greenstone belt of Bogoin, Central African Republic: geochemistry and petrogenesis[J]. Precambrian Research, 1994, 68(1) : 97-113.

    Google Scholar

    [105] 叶浩, Merlain H B, 赵越, 等. 中非造山带: 喀麦隆北部地质构造与河流沉积物重矿物分析[J]. 地质力学学报, 2014, 20(2) : 103-113. doi: 10.3969/j.issn.1006-6616.2014.02.001

    CrossRef Google Scholar

    [106] Goussi Ngalamo J F, Sobh M, Bisso D, et al. Lithospheric structure beneath the Central Africa Orogenic Belt in Cameroon from the analysis of satellite gravity and passive seismic data[J]. Tectonophysics, 2018, 745: 326-337. doi: 10.1016/j.tecto.2018.08.015

    CrossRef Google Scholar

    [107] Goussi Ngalamo J F, Bisso D, Abdelsalam M G, et al. Geophysical imaging of metacratonizaton in the northern edge of the Congo Craton in Cameroon[J]. Journal of African Earth Sciences, 2017, 129: 94-107. doi: 10.1016/j.jafrearsci.2016.12.010

    CrossRef Google Scholar

    [108] Feybesse J L, Johan V, Triboulet C, et al. The West Central African belt: A model of 2.5-2.0 Ga accretion and two-phase orogenic evolution[J]. Precambrian Research, 1998, 87(3) : 161-216.

    Google Scholar

    [109] Tack L, Wingate M, Liégeois J P, et al. Early Neoproterozoic magmatism (1000-910 Ma) of the Zadinian and Mayumbian Groups (Bas-Congo) : onset of Rodinia rifting at the western edge of the Congo craton[J], 2001, 110(1) : 207-306.

    Google Scholar

    [110] Fritz H, Loizenbauer J. Aspects of the geological evolution of Africa[J]. Journal of African Earth Sciences, 2002, 34(3) : 99-100.

    Google Scholar

    [111] De Waele B, Johnson S P, Pisarevsky S A. Palaeoproterozoic to Neoproterozoic growth and evolution of the eastern Congo Craton: Its role in the Rodinia puzzle[J]. Precambrian Research, 2008, 160(1) : 127-141.

    Google Scholar

    [112] Snelling N J. The geology of the northern Rhodesian Copperbelt[J]. Geochimica et Cosmochimica Acta, 1962, 26(4) : 523-524. doi: 10.1016/0016-7037(62)90102-3

    CrossRef Google Scholar

    [113] De Waele B, Wingate M T D, Fitzsimons I C W, et al. Untying the Kibaran knot; a reassessment of Mesoproterozoic correlations in Southern Africa based on SHRIMP U-Pb data from the Irumide Belt[J]. Geology, 2003, 31(6) : 509-512. doi: 10.1130/0091-7613(2003)031<0509:UTKKAR>2.0.CO;2

    CrossRef Google Scholar

    [114] Bird P J. Evolution of the Kibali Granite-Greenstone Belt, North East Democratic Republic of the Congo, and controls on gold mineralisation at the Kibali Gold Deposit[Z]. Kingston University, 2016.

    Google Scholar

    [115] Kabete J M, Mcnaughton N J, Bashizi A, et al. Geologic-tectonic setting of the gold-endowed Kilo Terrane in the eastern Central Kibalian Superterrane, northeastern Democratic Republic of Congo[J]. Precambrian Research, 2021, 359: 106182. doi: 10.1016/j.precamres.2021.106182

    CrossRef Google Scholar

    [116] Boniface N, Mruma A H. Structural analysis, metamorphism, and geochemistry of the Archean granitoids-greenstones of the Sukumaland Greenstone Belt around Geita Hills, Northern Tanzania[J]. Natural Science, 2012, 4(8) : 526-535. doi: 10.4236/ns.2012.48070

    CrossRef Google Scholar

    [117] Lavreau J. Vein and stratabound gold deposits of northern Zaire[J]. Mineralium Deposita, 1984, 19(2) : 158-165.

    Google Scholar

    [118] Borg G, Shackleton R M. The Tanzania and NE-Zaire Cratons - in de Wit and Ashwal - Greenstone Belts (OUP)[M]. Oxford: Oxford University Press, 1997.

    Google Scholar

    [119] Gabert G, Gaal G, Groves D I. Lithostratigraphic and tectonic setting of gold mineralization in the Archean cratons of Tanzania and Uganda, East Africa[J]. Precambrian Research, 1990, 46(1/2) : 59-69.

    Google Scholar

    [120] Borg G, Krogh T. Isotopic age data of single zircons from the Archaan Sukumaland Greenstone Belt, Tanzania[J]. Journal of African Earth Sciences, 1999, 29(2) : 301-312. doi: 10.1016/S0899-5362(99)00099-8

    CrossRef Google Scholar

    [121] Manya S. Geochemistry and petrogenesis of volcanic rocks of the Neoarchaean Sukumaland Greenstone Belt, northwestern Tanzania[J]. Journal of African Earth Sciences, 2004, 40(5) : 269-279. doi: 10.1016/j.jafrearsci.2004.12.006

    CrossRef Google Scholar

    [122] Schofield D I, Thomas R J, Goodenough K M, et al. Geological evolution of the Antongil Craton, NE Madagascar[J]. Precambrian Research, 2010, 182(3) : 187-203. doi: 10.1016/j.precamres.2010.07.006

    CrossRef Google Scholar

    [123] 车继英, 赵院冬, 王奎良, 等. 马达加斯加前寒武纪变质基底特征综述[J]. 地质与资源, 2013, 22(4) : 340-346. doi: 10.3969/j.issn.1671-1947.2013.04.017

    CrossRef Google Scholar

    [124] Collins A S, et al. Age and magmatic history of the Antananarivo Block, central Madagascar, as derived from zircon geochronology and Nd isotopic systematics[J]. American Journal of Science, 2000, 300(4) : 251-288. doi: 10.2475/ajs.300.4.251

    CrossRef Google Scholar

    [125] Tucker R D, Roig J Y, Macey P H, et al. A new geological framework for south-central Madagascar, and its relevance to the "out-of-Africa" hypothesis[J]. Precambrian Research, 2011, 185(3/4) : 109-130.

    Google Scholar

    [126] Bésairie H. Madagascar Carte Géologique, color map in 3 sheets, 1: 1 000 000 scale[M]. Antananarivo: Service Géologique Madagascar, 1964.

    Google Scholar

    [127] Windley B F, Razafiniparany A, Razakamanana T, et al. Tectonic framework of the Precambrian of Madagascar and its Gondwana connections: a review and reappraisal[J]. Geologische Rundschau, 1994, 83(3) : 642-659. doi: 10.1007/BF01083234

    CrossRef Google Scholar

    [128] Gaf B. Explanatory notes for the Androyen Domain southern Madagascar. Réalisation des travaux de cartographiegéologique de Madagascar, revision approfondie de la cartographiegéolog- iqueetminière aux échelles 1/100 000 et 1/500 000 zone Sud[Z]. Minsitère des Mines et des Ressources Stratégiques, 2008.

    Google Scholar

    [129] Collins A S. Madagascar and the amalgamation of central Gondwana[J]. Gondwana Research, 2006, 9(1/2) : 3-16.

    Google Scholar

    [130] Thomas R J, De Waele B, Schofield D I, et al. Geological evolution of the Neoproterozoic Bemarivo Belt, northern Madagascar[J]. Precambrian Research, 2009, 172(3/4) : 279-300.

    Google Scholar

    [131] Jons N, Emmel B, Schenk V, et al. From orogenesis to passive margin; the cooling history of the Bemarivo Belt (N Madagascar), a multi-thermochronometer approach[J]. Gondwana Research, 2009, 16(1) : 72-81. doi: 10.1016/j.gr.2009.02.006

    CrossRef Google Scholar

    [132] Martin H, Porada H. The intracratonic branch of the Damara Orogen in South West Africa; Ⅱ, Discussion of relationships with the Pan-African mobile belt system[J]. Precambrian Research, 1977, 5(4) : 339-357. doi: 10.1016/0301-9268(77)90040-7

    CrossRef Google Scholar

    [133] Henry G, Clendenin C W, Stanistreet I G, et al. Multiple detachment model for the early rifting stage of the late Proterozoic Damara Orogen in Namibia[J]. Geology, 1990, 18(1) : 67-71. doi: 10.1130/0091-7613(1990)018<0067:MDMFTE>2.3.CO;2

    CrossRef Google Scholar

    [134] Kukla C, Kramm U, Kukla P A, et al. U-Pb monazite data relating to metamorphism and granite intrusion in the northwestern Khomas Trough, Damara Orogen, central Namibia[J]. Communications of the Geological Survey of South West Africa/Namibia, 1991, 7: 49-54.

    Google Scholar

    [135] Colliston W P, Schoch A E. Wrench-shearing during the Namaqua Orogenesis—Mesoproterozoic late stage deformation effects during Rodinia assembly[J]. Precambrian Research, 2013, 233: 44-58. doi: 10.1016/j.precamres.2013.03.007

    CrossRef Google Scholar

    [136] Pitts B E, Maher M J, de Beer J H, et al. Interpretation of magnetic, gravity and magnetotelluric data across the Cape fold belt and Karoo Basin[M]. Rotterdam: A.A. Balkema, 1992.

    Google Scholar

    [137] Booth P W K, Shone R W, Fritz H, et al. A review of thrust faulting in the eastern Cape fold belt, South Africa, and the implications for current lithostratigraphic interpretation of the Cape Supergroup[J]. Journal of African Earth Sciences, 2002, 34(3/4) : 179-190.

    Google Scholar

    [138] Fagereng A, Smith Z, Rowe C D, et al. Stress, strain, and fault behavior at a thrust ramp; insights from the Naukluft Thrust, Namibia[J]. Journal of Structural Geology, 2014, 58: 95-107. doi: 10.1016/j.jsg.2013.11.002

    CrossRef Google Scholar

    [139] Paton D A. Influence of crustal heterogeneity on normal fault dimensions and evolution: southern South Africa extensional system[J]. Journal of Structural Geology, 2006, 28(5) : 868-886. doi: 10.1016/j.jsg.2006.01.006

    CrossRef Google Scholar

    [140] Wit M D, Ronde C D, Tredoux M, et al. Formation of an Archaean continent[J]. Nature, 1992, 357(6379) : 553-562. doi: 10.1038/357553a0

    CrossRef Google Scholar

    [141] Griffin W L, O'Reilly S Y, Natapov L M, et al. The evolution of lithospheric mantle beneath the Kalahari Craton and its margins[J]. Lithos, 2003, 71(2) : 215-241.

    Google Scholar

    [142] Eglington B M, Armstrong R A, de Wit M J, et al. The Kaapvaal Craton and adjacent orogens, Southern Africa; a geochronological database and overview of the geological development of the craton[J]. South African Journal of Geology, 2004, 107(1/2) : 13-32.

    Google Scholar

    [143] Moen H F G. The Kheis tectonic subprovince, Southern Africa; a lithostratigraphic perspective[J]. South African journal of geology, 1999, 102(1) : 27-42.

    Google Scholar

    [144] Cornell D H, Armstrong R A, Walraven F, et al. Geochronology of the Proterozoic Hartley basalt formation, South Africa; constraints on the Kheis tectogenesis and the Kaapvaal Craton's earliest Wilson cycle[J]. Journal of African Earth Sciences, 1998, 26(1) : 5-27. doi: 10.1016/S0899-5362(97)00133-4

    CrossRef Google Scholar

    [145] Reenen D D V, Perchuk L L, Smit C A, et al. Structural and P-T evolution of a major cross fold in the Central Zone of the Limpopo high-grade terrain, South Africa. Journal of Petrology[J]. Journal of Petrology, 2004, 45(7) : 1413-1439. doi: 10.1093/petrology/egh028

    CrossRef Google Scholar

    [146] Hanson R E, Wardlaw M S, Wilson T J, et al. U-Pb zircon ages from the Hook granite massif and Mwembeshi dislocation: constraints on Pan-African deformation, plutonism, and transcurrent shearing in Central Zambia[J]. Precambrian Research, 1993, 63(3) : 189-209.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Tables(1)

Article Metrics

Article views(2290) PDF downloads(56) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint