2025 Vol. 44, No. 5
Article Contents

WANG Lijuan, WANG Zhe, LI Xiaoyuan, SONG Shenghua, LIU Min, LIU Pengfei. 2025. Chemical characteristics and formation mechanism of shallow groundwater in Shijiazhuang area. Geological Bulletin of China, 44(5): 837-847. doi: 10.12097/gbc.2024.08.004
Citation: WANG Lijuan, WANG Zhe, LI Xiaoyuan, SONG Shenghua, LIU Min, LIU Pengfei. 2025. Chemical characteristics and formation mechanism of shallow groundwater in Shijiazhuang area. Geological Bulletin of China, 44(5): 837-847. doi: 10.12097/gbc.2024.08.004

Chemical characteristics and formation mechanism of shallow groundwater in Shijiazhuang area

More Information
  • Objective

    To gain a comprehensive understanding of the chemical characteristics and formation mechanism of shallow groundwater in the Shijiazhuang area and provide scientific references for water environment management departments.

    Methods

    Based on the shallow groundwater quality monitoring data of the Shijiazhuang area from 2019 to 2020, methods such as geostatistics, Piper diagram, Gibbs model, and ion ratio were comprehensively employed to analyze the chemical characteristics of shallow groundwater in different hydrogeological units of the Shijiazhuang area, the main chemical indicators affecting water quality, and their formation mechanisms.

    Results

    The pH value of shallow groundwater in the Shijiazhuang area ranged from 7.13 to 8.48, falling between neutral water and weak alkaline water; the average values of TH (total hardness) and TDS (total dissolved solids) were 391.03 mg/l and 590.60 mg/l respectively, showing a gradually decreasing trend along the groundwater runoff direction; the anions and cations in the entire area and each hydrogeological unit were mainly HCO3, SO42−, Ca2+ and Na+, and the cations in the platform and river valley plain area were mainly Ca2+ and Mg2+, and the spatial variation coefficients of ions such as Na+, Cl, SO42−, NO3 were relatively large; the chemical type of shallow groundwater was mainly HCO3·SO4−Ca·Mg, followed by SO4·HCO3−Ca·Mg type, and the chemical type of water gradually became more complex from the platform area to the alluvial−proluvial plain area; The formation of chemical components in shallow groundwater is primarily controlled by rock weathering. In alluvial−proluvial plains and tableland regions, the formation of certain chemical components in groundwater is significantly influenced by human activities. The main indicators exceeding standards in shallow groundwater within the study area are total hardness (TH), sulfate (SO42−), and nitrate (NO3). The comprehensive exceedance rate of these three indicators is highest in the valley plain area, reaching 62.5%. The formation of chemical components in groundwater samples with exceeded TH, SO42−, and NO3 standards is not only affected by the dissolution of carbonate minerals but also by the dissolution of sulfate minerals and anthropogenic factors, such as agricultural activities and municipal sewage discharge.

    Conclusions

    The chemical characteristics of shallow groundwater in the Shijiazhuang area exhibit distinct zonation. From the tableland region to the alluvial−proluvial plain, the concentrations of TH and total dissolved solids (TDS) in groundwater gradually decrease, water chemistry types become increasingly complex, and the water quality exceedance rate progressively declines. Furthermore, the phenomenon of water quality exceedance results from the combined effects of natural and anthropogenic factors. This study on the hydrochemical characteristics and their formation mechanisms of shallow groundwater in different hydrogeological units in the Shijiazhuang area provides a critical scientific basis for water environment management departments.

  • 加载中
  • [1] Chang S, Zhao X R, Liu Y, et al. 2016. Distribution characteristics and health risk assessment of volatile organic compounds in groundwater of Hutuo River Pluvial Fan[J]. Research of Environmental Sciences, 29(6): 854−862 (in Chinese with English abstract).

    Google Scholar

    [2] Gao W H, Zhang J, Zhang W Z, et al. 2023. Hydrochemical Characteristics and Influencing Factors of Groundwater in Huanglong, a World Natural Heritage[J]. Water Resources, 50(4): 619−632. doi: 10.1134/S0097807823040164

    CrossRef Google Scholar

    [3] Jiang Y, Cao M, Yuan D, et al. 2018. Hydrogeological characterization and environmental effects of the deteriorating urban karst groundwater in a karst trough valley: Nanshan, SW China[J]. Hydrogeology Journal, 26(5): 1487−1497. doi: 10.1007/s10040-018-1729-y

    CrossRef Google Scholar

    [4] Kong X L, Chang Y R, Liu X, et al. 2023. Spatial variation characteristics, influencing factors, and sources of hydrogeochemical of surface water and groundwater in mountainous area of Hutuo River[J]. Environmental Science, 44(8): 4292−4302 (in Chinese with English abstract).

    Google Scholar

    [5] Liu Y, Qiao X C, Jiang Q F, et al. 2016. Spatial distribution and influencing factors of nitrate content in groundwater of alluvial−pluvial fan of Hutuo River[J]. Journal of Agro−Environment Science, 35(5): 947−954 (in Chinese with English abstract).

    Google Scholar

    [6] Li Y S, Zhang Z J, Fei Y H, et al. 2014. Groundwater quality and contamination characteristics in the Hutuo River Plain area, Hebei Province[J]. Acta Geoscientica Sinica, 35(2): 169−176 (in Chinese with English abstract).

    Google Scholar

    [7] Li Z Y, Huang F Y, Liu D D, et al. 2019. Pollution and distribution characteristics of pesticides in groundwater in the alluvial−pluvial fan of the Hutuo River, Haihe River Basin[J]. Rock and Mineral Analysis, 38(2): 186−194 (in Chinese with English abstract).

    Google Scholar

    [8] Miao L P, Meng R F, Wang H W, et al. 2020. Characteristics and source apportionment of groundwater sulfate pollution in Hutuo River basin[J]. Environmental Science & Technology, 43(S1): 91−97 (in Chinese with English abstract).

    Google Scholar

    [9] Tu C L, Yin L H, He C Z, et al. 2022. Hydrochemical composition characteristics and control factors of Xiaohuangni River Basin in the Upper Pearl River[J]. Environmental Science, 43(4): 1885−1898 (in Chinese with English abstract).

    Google Scholar

    [10] Wang H W, Guo X J, Zhang Q Q, et al. 2021. Evolution of groundwater hydrochemical characteristics and origin analysis in Hutuo River Basin[J]. Environmental Chemistry, 40(12): 3838−3845 (in Chinese with English abstract).

    Google Scholar

    [11] Wang L, Deng J F, Cao Y T, et al. 2024. The chemical characteristics and formation mechanism of surface water−shallow groundwater in Maqinqu Basin, Ritu County, Tibet[J/OL]. Geological Bulletin of China, https://link.cnki.net/urlid/11.4648.P.20241022.1149.013.

    Google Scholar

    [12] Wang S Y, Ma Z H, Chang M, et al. 2024. Hydrochemical characteristics and mechanism analysis of shallow groundwater in Beijing Plain area[J/OL]. Environmental Science, https://doi.org/10.13227/j.hjkx.202401100 (in Chinese with English abstract).

    Google Scholar

    [13] Yang X Q, Li Y G, Hao X L, et al. 2020. Shijiazhuang Water Resources Bulletin(2020)[R]. Shijiazhuang: Shijiazhuang Water Resources Bureau: 11−14 (in Chinese with English abstract).

    Google Scholar

    [14] Yan Y, Gao R Z, Liu T X, et al. 2023. Hydrochemical characteristics and control factors of groundwater in the Northwest Sale Lake Basin[J]. Environmental Science, 44(12): 6767−6777 (in Chinese with English abstract).

    Google Scholar

    [15] Yu C, Xu Z F, Liu W J, et al. 2017. River water geochemistry of Hanjiang River, implications for silicate weathering and sulfuric acid participation[J]. Earth and Environment, 45(4): 390−398 (in Chinese with English abstract).

    Google Scholar

    [16] Zhang C Y, Liu W S. 1996. Geochemical evolution simulation of sallow groundwater in Hebei Plan[J]. Earth Science Frontiers 3(1/2): 245−248 (in Chinese with English abstract).

    Google Scholar

    [17] Zhang Q Q, Wang H W, Wang L, et al. 2018. Increasing mechanism of groundwater total hardness (TH) in the Hutuo River alluvial−pluvial Fan[J]. Environmental Science & Technology, 41(S2): 62−68 (in Chinese with English abstract).

    Google Scholar

    [18] Zhang Q Q, Wang H W, Zhai T L, et al. 2017. Characteristics and source apportionment of groundwater nitrate contamination in the Hutuo River alluvial−pluvial fan regions[J]. Hydrogeology & Engineering Geology, 44(6): 110−117 (in Chinese with English abstract).

    Google Scholar

    [19] Zhang T, Wang M, Zhang Z, et al. 2020. Hydrochemical Characteristics and Possible Controls of the Surface Water in Ranwu Lake Basin[J]. Environmental Science, 41(9): 4003−4010 (in Chinese with English abstract).

    Google Scholar

    [20] Zhang W, Wang D W, Lei K, et al. 2020. Hydrochemical characteristics and impact factors in the middle and lower reaches of the Yellow River in the Wet Season[J]. Reserch of the Soil and Water Conservation, 27(1): 380−386,393 (in Chinese with English abstract).

    Google Scholar

    [21] Zhang X W, He J T, He B N, et al. 2019. Assessment, formation mechanism, and different source contributions of dissolved salt pollution in the shallow groundwater of Hutuo River alluvial−pluvial fan in the North China Plain[J]. Environmental Science and Pollution Research, 26(35): 35742−35756. doi: 10.1007/s11356-019-06502-2

    CrossRef Google Scholar

    [22] Zhao M J, Miao Q Z, Geng B L, et al. 2024. Groundwater quality and main influencing factors in the northeast of Zhanjiang City, Guangdong Province[J/OL]. Geological Bulletin of China, https://link.cnki.net/urlid/11.4648.P.20241219.1150.004 (in Chinese with English abstract).

    Google Scholar

    [23] Zheng T, Jiao T L, Hu B, et al. 2021. Hydrochemical characteristics and origin of groundwater in the Central Guohe River Basin[J]. Environmental Science, 42(2): 766−775 (in Chinese with English abstract).

    Google Scholar

    [24] 昌盛, 赵兴茹, 刘琰, 等. 2016. 滹沱河冲洪积扇地下水中挥发性有机物的分布特征与健康风险[J]. 环境科学研究, 29(6): 854−862.

    Google Scholar

    [25] 孔晓乐, 常玉儒, 刘夏, 等. 2023. 滹滹沱河流域山区地表水-地下水水化学空间变化特征\影响因素及其来源[J]. 环境化学, 44(8): 4292−4302.

    Google Scholar

    [26] 刘琰, 乔肖翠, 江秋枫, 等. 2016. 滹沱河冲洪积扇地下水硝酸盐含量的空间分布特征及影响因素[J]. 农业环境科学学报, 35(5): 947−954. doi: 10.11654/jaes.2016.05.019

    CrossRef Google Scholar

    [27] 李亚松, 张兆吉, 费宇红, 等. 2014. 河北省滹沱河冲积平原地下水质量及污染特征研究[J]. 地球学报, 35(2): 169−176. doi: 10.3975/cagsb.2014.02.07

    CrossRef Google Scholar

    [28] 李泽岩, 黄福杨, 刘丹丹, 等. 2019. 海河流域滹沱河冲洪积扇地下水中农药污染及分布特征[J]. 岩矿测试, 38 (2): 186−194.

    Google Scholar

    [29] 缪丽萍, 孟瑞芳, 王慧玮, 等. 2020. 滹沱河流域地下水硫酸盐污染特征及源解析[J]. 环境科学与技术, 43(S1): 91−97.

    Google Scholar

    [30] 涂春霖, 尹林虎, 和成忠, 等. 2022. 珠江源区小黄泥河流域地表水水化学组成特征及控制因素[J]. 环境科学, 43(4): 1885−1898.

    Google Scholar

    [31] 王慧玮, 郭小娇, 张千千, 等. 2021. 滹沱河流域地下水水化学特征演化及成因分析[J]. 环境化学, 40(12): 3838−3845. doi: 10.7524/j.issn.0254-6108.2020080301

    CrossRef Google Scholar

    [32] 王亮, 邓俊峰, 曹亚廷, 等. 2024. 西藏日土县玛钦曲流域地表水-浅层地下水化学特征及其形成机制[J/OL]. 地质通报. https://link.cnki.net/urlid/11.4648.P.20241022.1149.013.

    Google Scholar

    [33] 王世玉, 马召辉, 常淼, 等. 2024. 北京市平原区浅层地下水水化学特征及成因分析[J/OL]. 环境科学. https://doi.org/10.13227/j.hjkx.202401100.

    Google Scholar

    [34] 杨晓清, 李艳刚, 郝晓莉, 等. 2020. 石家庄市水资源公报(2020)[R]. 石家庄: 石家庄市水利局: 11−14.

    Google Scholar

    [35] 艳艳, 高瑞忠, 刘廷玺, 等. 2023. 西北盐湖流域地下水水化学特征及控制因素[J]. 环境科学, 44(12): 6767−6777.

    Google Scholar

    [36] 余冲, 徐志方, 刘文景, 等. 2017. 韩江流域河水地球化学特征与硅酸盐岩风化-风化过程硫酸作用[J]. 地球与环境, 45(4): 390−398.

    Google Scholar

    [37] 张翠云, 刘文生. 1996. 河北平原浅层地下水地球化学演化模拟[J]. 地学前缘, 3(1/2): 245−248. doi: 10.3321/j.issn:1005-2321.1996.02.019

    CrossRef Google Scholar

    [38] 张千千, 王慧玮, 王龙, 等. 2018. 滹沱河冲洪积扇地区地下水硬度升高的机理研究[J]. 环境科学与技术, 41(S2): 62−68.

    Google Scholar

    [39] 张千千, 王慧玮, 翟天伦, 等. 2017. 滹沱河冲洪积扇地下水硝酸盐的污染特征及污染源解析[J]. 水文地质工程地质, 44(6): 110−117.

    Google Scholar

    [40] 张涛, 王明国, 张智印, 等. 2020. 然乌湖流域地表水水化学特征及控制因素[J]. 环境科学, 41(9): 4003−4010.

    Google Scholar

    [41] 张旺, 王殿武, 雷坤, 等. 2020. 黄河中下游丰水期水化学特征及影响因素[J]. 水土保持研究, 27(1): 380−386,393.

    Google Scholar

    [42] 赵明杰, 苗青壮, 耿百利, 等. 2024. 广东湛江市东北部地下水质量及主要影响因素成因[J/OL]. 地质通报. https://link.cnki.net/urlid/11.4648.P.20241219.1150.004.

    Google Scholar

    [43] 郑涛, 焦团理, 胡波, 等. 2021. 涡河流域中部地区地下水化学特征及其成因分析[J]. 环境科学, 42(2): 766−775.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(2)

Article Metrics

Article views(286) PDF downloads(27) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint