2025 Vol. 44, No. 5
Article Contents

SUN Jing, ZHAO Junlong, ZHANG Yuchen, JIN Lirui, CUI Wenjie, CHEN Jiaxin. 2025. Lithology identification of tight sandstone reservoirs based on SSMO-SSA-LGBM algorithm. Geological Bulletin of China, 44(5): 935-948. doi: 10.12097/gbc.2024.06.016
Citation: SUN Jing, ZHAO Junlong, ZHANG Yuchen, JIN Lirui, CUI Wenjie, CHEN Jiaxin. 2025. Lithology identification of tight sandstone reservoirs based on SSMO-SSA-LGBM algorithm. Geological Bulletin of China, 44(5): 935-948. doi: 10.12097/gbc.2024.06.016

Lithology identification of tight sandstone reservoirs based on SSMO-SSA-LGBM algorithm

More Information
  • Objective

    Existing lithology logging identification methods face challenges of imbalanced lithology class processing and insufficient sensitivity when applied to tight sandstone reservoirs.

    Methods

    This study proposes the SSMO−SSA−LGBM model. First, the SVM−SMOTE oversampling algorithm (abbreviated as SSMO) is used to balance samples with fewer lithology data in the training set by generating synthetic samples. These synthetic samples are combined with the original training set to form a new training dataset for constructing the LightGBM (LGBM) model. Given the numerous hyperparameters in LGBM, the Sparrow Search Algorithm (SSA) is employed to optimize hyperparameters and obtain the optimal combination. The model is trained using logging data from the Yan 10 tight sandstone reservoir in the Huachi S Block, and compared with KNN, Adaboost, Random Forest, and other models.

    Results

    After SSMO balancing, the LGBM model exhibits enhanced recognition performance for minority lithology classes. The SSA algorithm achieves global optimization with fewer iterations, obtaining the optimal hyperparameters for LGBM. The SSMO−SSA−LGBM model demonstrates superior predictive performance, with lithology identification results on validation wells showing high consistency with core data.

    Conclusions

    The SSMO algorithm effectively mitigates the adverse effects of lithology class imbalance on prediction accuracy. The SSA algorithm efficiently identifies the optimal hyperparameter combination for LGBM through limited iterations, maximizing model performance. The proposed model achieves satisfactory application results in the Huachi S Block.

  • 加载中
  • [1] Chen G H, Wu W S, Mao K Y. 2001. Identification of lithology using geological micro resistivity scanning images[J]. Petroleum Exploration and Development, (2): 53−55,110-111,120 (in Chinese with English abstract).

    Google Scholar

    [2] Cheng C, Li P Y, Chen Y, et al. 2022. Research progress of reservoir logging evaluation based on machine learning[J]. Progress in Geophysics, 37(1): 164−177 (in Chinese with English abstract).

    Google Scholar

    [3] Feng C J, Wang J Y, Feng Q F. 2004. Method of identifying igneous rock lithology using logging data[J]. Journal of Northeast Petroleum University, (4): 9−11,109-110 (in Chinese with English abstract).

    Google Scholar

    [4] Gao B, Zheng Y, Qin J, et al. 2022. Network intrusion detection algorithm based on sparrow search algorithm andimproved particle swarm optimization algorithm[J]. Journal of Computer Applications, 42(4): 1201−1206 (in Chinese with English abstract).

    Google Scholar

    [5] Gu Y F, Zhang D Y, Bao Z D. 2021. Lithology prediction of tight sandstone reservoirs using the PSO-GBDT : A case study of the Chang 4+5 members in the Western Jiyuan Oilfield[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 40(3): 624-634 (in Chinese with English abstract).

    Google Scholar

    [6] Gu Y F, Zhang D Y, Bao Z D. 2021. Lithology identification in tight sandstone reservoirs using CRBM-PSO-XGBoost[J]. Oil & Gas Geology, 42(5): 1210−1222 (in Chinese with English abstract).

    Google Scholar

    [7] Gu Y F, Zhang D Y, Bao Z D, et al. 2021. Lithology prediction of tight sandstone formation using GS-LightGBM hybrid machine learning model[J]. Bulletin of Geological Science and Technology, 40(4): 224−234 (in Chinese with English abstract).

    Google Scholar

    [8] Han Q D, Zhang X T, Shen W. 2019. Application of support vector machine based on decision tree feature extraction in lithology classification[J]. Journal of Jilin University(Earth Science Edition), 49(2): 611−620 (in Chinese with English abstract).

    Google Scholar

    [9] Han X H, He Y S, Chen J, et al. 2024. Research on rock lithology intelligent identification based on Swin Transformer[J]. Modern Electronics Technique, 47(7): 37−44 (in Chinese with English abstract).

    Google Scholar

    [10] He Y W, Li W R, Dong Z Z, et al. 2023. Lithologic identification of complex reservoir based on PSO-LSTM-FCN algorithm[J]. Energies, 16(5): 21-35 (in Chinese with English abstract).

    Google Scholar

    [11] Jiang J, Fang L, Zhang H B, et al. 2022. Adaptive multiexpert learning for lithology recognition[J]. SPE Journal, 27(6): 3802−3813.

    Google Scholar

    [12] Li J, Liu, K. Zhou, et al. 2021. An improved deep forest model combining adaptive synthetic sampling for automatic lithology identification[C]//China Automation Congress (CAC): 1215-1220.

    Google Scholar

    [13] Li X, Fan X Y, Wang Z F, et al. 2022. Logging lithology identification method research based on PSO-SVM: A case study of Paleozoic (Pz) reservoir in K oil field, South Turgay Basin, Kazakhstan[J]. Progress in Geophysics, 37(2): 617−626 (in Chinese with English abstract).

    Google Scholar

    [14] Liu K, Zou Z K, Wang Z Z, et al. 2022. Intelligent identification and prediction of lithology of volcanic reservoirs based on machine learning[J]. Special Oil & Gas Reservoirs, 29(1): 38−45 (in Chinese with English abstract).

    Google Scholar

    [15] Luo R Z, Tuo J J, Ni H L, et al. 2023. Logging lithology identification method based on improved ensemble learning[J]. Geophysical Prospecting for Petroleum, 62(2): 212−224 (in Chinese with English abstract).

    Google Scholar

    [16] Ma Z, Zhang C L, Gao S C. 2017. Lithology identification based on principal component analysis and fuzzy recognition[J]. Lithologic Reservoirs, 29(5): 127−133 (in Chinese with English abstract).

    Google Scholar

    [17] Shi S, Yu J F, Cao H T, et al. 2020. Reservoir lithology identification based on SVM using radial basis function: An example of Upper Paleozoic clastic rocks in Dongpu sag[J]. China Sciencepaper, 15(1): 112−118, 136 (in Chinese with English abstract).

    Google Scholar

    [18] Song Z H, Gong H Y, Ran A H, et al. 2024. Lithology logging identification of volcanic rock based on ADASYN-GS-XGBOOST hybrid model[J]. Marine Origin Petroleum Geology, 29(2): 188−196 (in Chinese with English abstract).

    Google Scholar

    [19] Su F, Ma L, Luo R Z, et al. 2020. Research and application of logging lithology identification based on improve multi-class twin support vector machine[J]. Progress in Geophysics, 35(1): 174−180 (in Chinese with English abstract).

    Google Scholar

    [20] Sun X G, Wei W, Li H M. 2012. Fluid sensitivity analysis of petrophysical parameters[J]. Petroleum Reservoir Evaluation and Development, 2(1): 37−40,49 (in Chinese with English abstract).

    Google Scholar

    [21] Wang H, Jiang Y N, Zhang X, et al. 2021. Lithology identification method based on gradient boosting algorithm[J]. Journal of Jilin University(Earth Science Edition), 51(3): 940−950 (in Chinese with English abstract).

    Google Scholar

    [22] Wang Z Q, Dong H C, Fan T E, et al. 2021. Logging lithofacies analysis based on unsupervised learning[J]. Geophysical Prospecting for Petroleum, 60(3): 403−413 (in Chinese with English abstract).

    Google Scholar

    [23] Wang Z S. 2022. Research on imbalanced data classification based on ensemble learning[D]. Master's Thesis of Beijing Jiaotong University (in Chinese with English abstract).

    Google Scholar

    [24] Wu Z Y, Zhang X, Zhang C L, et al. 2021. Lithology identification based on LSTM recurrent neural network[J]. Lithologic Reservoirs, 33(3): 120−128 (in Chinese with English abstract).

    Google Scholar

    [25] Xu F G, Deng S G, Fan Y R, et al. 2006. Overview of the progress in logging evaluation of igneous reservoirs[J] Petroleum Reservoir Evaluation and Development, (4): 239-243, 11.

    Google Scholar

    [26] Xu Z H, Ma W, Lin P, et al. 2021. Intelligent lithology identification based on transfer learning of rock images[J]. Journal of Basic Science and Engineering, 29(5): 1075−1092 (in Chinese with English abstract).

    Google Scholar

    [27] Xue J K, Shen B. 2020. A novel swarm intelligence optimization approach: Sparrow search algorithm[J]. Systems Science and Control Engineering, 8(1): 22−34. doi: 10.1080/21642583.2019.1708830

    CrossRef Google Scholar

    [28] Zhang H, Lu S F, Li W H, et al. 2017. Application of ΔLogR technology and BP neural network in organic evaluation in the complex lithology tight stratum[J]. Progress in Geophysics, 32(3): 1308−1313 (in Chinese with English abstract).

    Google Scholar

    [29] Zhang Y, Li M C, Han S. 2018. Automatic identification and classification in lithology based on deep learning in rock images[J]. Acta Petrologica Sinica, 34(2): 333−342 (in Chinese with English abstract).

    Google Scholar

    [30] Zhang T, Li Y P, Liu X Y, et al. 2023. Lithology interpretation of deep metamorphic rocks with well logging based on APSO-LSSVM algorithm[J]. Progress in Geophysics, 38(1): 382−392 (in Chinese with English abstract).

    Google Scholar

    [31] Zhang Z L, Feng Y B, Zhao Z K. 2020. Oversampling method for unbalanced datasets based on SVM[J]. Computer Engineering and Applications, 56(23): 220−228 (in Chinese with English abstract).

    Google Scholar

    [32] Zhao F D, Han Z M, Fu X F, et al. 2024. LogDiffusion: A method of lithology identification based on diffusion probability model[J]. Progress in Geophysics: 1-19[2024-09-22] (in Chinese with English abstract).

    Google Scholar

    [33] Zhao J L. 2008. Principles of logging methods[M]. Shaanxi People's Education Press(in Chinese).

    Google Scholar

    [34] Zhou Y K, Liu H. 2024. Deep learning based lithology recognition of well logging data[J]. Uranium Geology, 40(2): 336−345(in Chinese with English abstract).

    Google Scholar

    [35] 陈钢花, 吴文圣, 毛克宇. 2001. 利用地层微电阻率扫描图像识别岩性[J]. 石油勘探与开发, (2): 53−55,110−111,120.

    Google Scholar

    [36] 程超, 李培彦, 陈雁, 等. 2022. 基于机器学习的储层测井评价研究进展[J]. 地球物理学进展, 37(1): 164−177.

    Google Scholar

    [37] 冯翠菊, 王敬岩, 冯庆付. 2004. 利用测井资料识别火成岩岩性的方法[J]. 东北石油大学学报, (4): 9−11,109-110.

    Google Scholar

    [38] 高兵, 郑雅, 秦静, 等. 2022. 基于麻雀搜索算法和改进粒子群优化算法的网络入侵检测算法[J]. 计算机应用, 42(4): 1201−1206.

    Google Scholar

    [39] 谷宇峰, 张道勇, 鲍志东. 2021a. PSO-GBDT识别致密砂岩储集层岩性研究——以姬塬油田西部长4+5段为例[J]. 矿物岩石地球化学通报, 40(3): 624−634.

    Google Scholar

    [40] 谷宇峰, 张道勇, 鲍志东, 等. 2021b. 利用GS-LightGBM机器学习模型识别致密砂岩地层岩性[J]. 地质科技通报, 40(4): 224−234.

    Google Scholar

    [41] 韩启迪, 张小桐, 申维. 2019. 基于决策树特征提取的支持向量机在岩性分类中的应用[J]. 吉林大学学报(地球科学版), 49(2): 611−620.

    Google Scholar

    [42] 韩鑫豪, 何月顺, 陈杰, 等. 2024. 基于Swin Transformer的岩石岩性智能识别研究[J]. 现代电子技术, 47(7): 37−44.

    Google Scholar

    [43] 罗仁泽, 庹娟娟, 倪华玲, 等. 2023. 基于改进集成学习的测井岩性识别方法研究[J]. 石油物探, 62(2): 212−224.

    Google Scholar

    [44] 李曦, 范翔宇, 王兆峰, 等. 2022. 基于PSO-SVM的测井岩性识别方法研究——以南图尔盖盆地K油田古生界(Pz)储层为例[J]. 地球物理学进展, 37(2): 617−626. doi: 10.6038/pg2022FF0254

    CrossRef Google Scholar

    [45] 刘凯, 邹正银, 王志章, 等. 2022. 基于机器学习的火山岩岩性智能识别及预测[J]. 特种油气藏, 29(1): 38−45.

    Google Scholar

    [46] 马峥, 张春雷, 高世臣. 2017. 主成分分析与模糊识别在岩性识别中的应用[J]. 岩性油气藏, 29(5): 127−133.

    Google Scholar

    [47] 石锁, 余继峰, 曹慧涛, 等. 2020. 基于高斯核SVM的储层岩性识别——以东濮凹陷上古生界碎屑岩为例[J]. 中国科技论文, 15(1): 112−118, 136.

    Google Scholar

    [48] 宋梓豪, 巩红雨, 冉爱华, 等. 2024. 基于ADASYN-GS-XGBOOST混合模型的火山岩测井岩性识别[J]. 海相油气地质, 29(2): 188−196.

    Google Scholar

    [49] 苏赋, 马磊, 罗仁泽, 等. 2020. 基于改进多分类孪生支持向量机的测井岩性识别方法研究与应用[J]. 地球物理学进展, 35(1): 174−180.

    Google Scholar

    [50] 孙兴刚, 魏文, 李红梅. 2012. 岩石物理参数的流体敏感性分析[J]. 油气藏评价与开发, 2(1): 37−40, 49. doi: 10.3969/j.issn.2095-1426.2012.01.009

    CrossRef Google Scholar

    [51] 王恒, 姜亚楠, 张欣, 等. 2021. 基于梯度提升算法的岩性识别方法[J]. 吉林大学学报(地球科学版), 51(3): 940−950.

    Google Scholar

    [52] 王宗俊, 董洪超, 范廷恩, 等. 2021. 基于无监督学习的测井岩相分析技术及其应用[J]. 石油物探, 60(3): 403−413.

    Google Scholar

    [53] 王增帅. 2022. 基于集成学习的不平衡数据分类问题研究[D]. 北京交通大学硕士学位论文.

    Google Scholar

    [54] 武中原, 张欣, 张春雷, 等. 2021. 基于LSTM循环神经网络的岩性识别方法[J]. 岩性油气藏, 33(3): 120−128.

    Google Scholar

    [55] 许风光, 邓少贵, 范宜仁, 等. 2006. 火成岩储层测井评价进展综述[J]. 油气藏评价与开发, (4): 239−243,11.

    Google Scholar

    [56] 许振浩, 马文, 林鹏, 等. 2021. 基于岩石图像迁移学习的岩性智能识别[J]. 应用基础与工程科学学报, 29(5): 1075-1092.

    Google Scholar

    [57] 张晗, 卢双舫, 李文浩, 等. 2017. ΔLogR技术与BP神经网络在复杂岩性致密层有机质评价中的应用[J]. 地球物理学进展, 32(3): 1308−1313.

    Google Scholar

    [58] 张涛, 李艳萍, 刘晓宇, 等. 2023. 基于自适应粒子群优化最小二乘支持向量机的深层变质岩测井岩性识别[J]. 地球物理学进展, 38(1): 382−392.

    Google Scholar

    [59] 张野, 李明超, 韩帅. 2018. 基于岩石图像深度学习的岩性自动识别与分类方法[J]. 岩石学报, 34(2): 333−342.

    Google Scholar

    [60] 赵逢达, 韩滋民, 付晓飞, 等. 2024. LogDiffusion: 一种基于扩散概率模型的岩性识别方法[J/OL]. 地球物理学进展: 1-19 [2024-09-22].

    Google Scholar

    [61] 赵军龙. 2008. 测井方法原理[M]. 西安: 陕西人民教育出版社.

    Google Scholar

    [62] 张忠林, 冯宜邦, 赵中恺. 2020. 一种基于SVM的非均衡数据集过采样方法[J]. 计算机工程与应用, 56(23): 220−228.

    Google Scholar

    [63] 周渊凯, 刘祜. 2024. 基于深度学习方法的测井岩性识别研究[J]. 铀矿地质, 40(2): 336−345.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(4)

Article Metrics

Article views(168) PDF downloads(66) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint