2025 Vol. 44, No. 6
Article Contents

WANG Yongchao, HOU Hesheng, HOU Fang, WEI Lijuan, HUANG Shiqi, AN Dongzhao. 2025. Cretaceous “Great Sanjiang Basin” and paleogeographic evolution: Constraint from detrital zircon dating in the Hegang basin. Geological Bulletin of China, 44(6): 1132-1150. doi: 10.12097/gbc.2024.03.019
Citation: WANG Yongchao, HOU Hesheng, HOU Fang, WEI Lijuan, HUANG Shiqi, AN Dongzhao. 2025. Cretaceous “Great Sanjiang Basin” and paleogeographic evolution: Constraint from detrital zircon dating in the Hegang basin. Geological Bulletin of China, 44(6): 1132-1150. doi: 10.12097/gbc.2024.03.019

Cretaceous “Great Sanjiang Basin” and paleogeographic evolution: Constraint from detrital zircon dating in the Hegang basin

    Fund Project: Supported by China Geological Survey projects (No. DD20230008, No.DD20190010) and National Natural Science Foundation of China projects (No. 41902116, No.42022029)
More Information
  • Author Bio: WANG Yongchao, male, born in 1987, associate researcher, engaged in sedimentary basin analysis and tectonic interpretation research; E−mail: yongchao@cags.ac.cn
  • Corresponding author: HOU Hesheng, male, born in 1980, researcher, engaged in lithosphere structure detection and resource prospects research; E−mail:hesheng.hou@126.com 
  • Objective

    Hegang Basin is an important component of the Cretaceous basin group in eastern Heilongjiang. The analysis of its sedimentary filling characteristics and provenance composition can effectively reveal key information about the evolution of the Cretaceous basin−mountain system and the transformation of tectonic paleogeomorphology in eastern Heilongjiang.

    Methods

    To well constrain the chronological framework of the basin fill, detrital zircon U−Pb dating for the crucial formations has been conducted.

    Results

    Based on compiling the published and our own data, ages for the Lower Cretaceous Chengzihe, Muling, and Dongshan formations are assigned to be 116~111 Ma, 111~107 Ma and 107~105 Ma, respectively, and the lower age limit for the Upper Cretaceous Houshigou Formation is thought to be ca. 104 Ma. The characteristics of detrital zircon age distribution reveal that the Cretaceous basin groups have already connected and unified a much larger prototype basin, namely the “Great Sanjiang Basin”, during the deposition of the Chengzihe and Muling formations. At that time, the paleogeography featured by a high elevation in the west and a low elevation in the east, and the Lesser Xing’an Range became the main source area for the unified basin. By the deposition of the Houshigou Formation, regional tectonic regime turned to be contraction from extension, resulting in differently uplift in the Jiamusi block and destruction of the “Great Sanjiang Basin”. Under effects of erosion and thrusting load from the eastern continental margin, the Lesser Xing’an Range reduced markedly in the elevation and eventually submerged by the water.

    Conclusions

    The regional unconformity under the Houshigou Formation has a tightly relationship with this basin−mountain system adjustment, and its corresponding time span could be less than 1 million years.

  • 加载中
  • [1] Chen D X, Zhang F Q, Tian Y T, et al. 2018. Timing of the late Jehol Biota: New geochronometric constraints from the Jixi Basin, NE China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 492: 41−49.

    Google Scholar

    [2] Feng Y H, Yang T, Liang F, et al. 2022. New zircon U–Pb age of the Didao Formation in Jixi Basin and its significance for the geology and paleogeography in Jixi and eastern Heilongjiang region in the Early Cretaceous[J]. Cretaceous Research, 135: 105169. doi: 10.1016/j.cretres.2022.105169

    CrossRef Google Scholar

    [3] Feng Z Q, Graham S A. 2023. From foredeep to orogenic wedge−top: The Cretaceous Songliao retroforeland basin, China[J]. Geoscience Frontiers, 14: 101527. doi: 10.1016/j.gsf.2022.101527

    CrossRef Google Scholar

    [4] He C Q, Sun X K. 2000. Late Hauterivian dinoflagellates from the lower part of the Chengzihe Formation in Jixi Basin, eastern Heilongjiang, NE China[J]. Acta Palaeontologica Sinica, 39(1): 46−62(in Chinese with English abstract).

    Google Scholar

    [5] Ji H L, He Z B, Qin M K, et al. 2020. Sedimentary characteristics of Lower Cretaceous Houshigou Formation in Hegang Depression, Sanjiang Basin, Heilongjiang Province[J]. Geological Review, 66(1): 52−68(in Chinese with English abstract).

    Google Scholar

    [6] Jing J H, Yang H, Gao Y, et al. 2021. Petrogenesis and tectonic setting of Early Paleozoic granitoids in Linkou area, Jiamusi Block[J]. Global Geology, 40(3): 547−559(in Chinese with English abstract).

    Google Scholar

    [7] Liu C, Zhu G, Zhang S, et al. 2018. Mesozoic strike−slip movement of the Dunhua–Mishan Fault Zone in NE China: A response to oceanic plate subduction[J]. Tectonophysics, 723: 201−222. doi: 10.1016/j.tecto.2017.12.024

    CrossRef Google Scholar

    [8] Liu Y J, Li W M, Feng Z Q, et al. 2017. A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt[J]. Gondwana Research, 43: 123−148. doi: 10.1016/j.gr.2016.03.013

    CrossRef Google Scholar

    [9] Liu Z H, Mei M, Gao J Y, et al. 2014. Structural features, formation mechanism of Hulin Basin and deformation time of northeastern segment of Dunhua−Mishan fault zone in Northeast China[J]. Journal of Jilin University, 44(2): 480−489(in Chinese with English abstract).

    Google Scholar

    [10] Liu Z H, Zhou F, Wu X H, et al. 2011. Coupling of Jiamusi uplift and surrounding Mesozoic−Cenozoic basins in Northeast China[J]. Journal of Jilin University, 41(5): 1335−1344(in Chinese with English abstract).

    Google Scholar

    [11] Ma Y F, Liu Y J, Peskov A Y, et al. 2022. Paleozoic tectonic evolution of the eastern Central Asian Orogenic Belt in NE China[J]. China Geology, 5(4): 555−578.

    Google Scholar

    [12] Ren F H, Yang X P, Li Y C, et al. 2005. Chronostratigraphic division of the Jixi Group in eastern Heilongjiang province and its geological significance[J]. Geology in China, 32(1): 48−54(in Chinese with English abstract).

    Google Scholar

    [13] Sha J G, Wang J P, Kirillova G, et al. 2009. Upper Jurassic and Lower Cretaceous of Sanjiang−Middle Amur basin: Non−marine and marine correlation[J]. Science in China Series D: Earth Sciences, 52: 1873−1889. doi: 10.1007/s11430-009-0173-1

    CrossRef Google Scholar

    [14] Sun M D, Chen H L, Zhang F Q, et al. 2014. Cretaceous provenance change in the Hegang Basin and its connection with the Songliao Basin, NE China: evidence for lithospheric extension driven by palaeo−Pacific roll−back[J]. Geological Society London Special Publications, 413: 91−117.

    Google Scholar

    [15] Wang Z W, Xu W L, Pei F P, et al. 2016. Geochronology and geochemistry of early Paleozoic igneous rocks of the Lesser Xing’an Range, NE China: Implications for the tectonic evolution of the eastern Central Asian Orogenic Belt[J]. Lithos, 261: 144−163. doi: 10.1016/j.lithos.2015.11.006

    CrossRef Google Scholar

    [16] Wei H Y, Sun D Y, Li Y C, et al. 2012. Zircon U−Pb ages and its geological significance of the granitic rocks in the Yichun−Hegang region, southeastern Xiao Hinggan mountains[J]. Earth Science, 37(supplement): 50−59(in Chinese with English abstract).

    Google Scholar

    [17] Wen Q B, Liu Y J, Li J J, et al. 2008. Provenance analysis and tectonic implications for the Cretaceous sandstones in the Jixi and Boli Basins, Heilongjiang[J]. Sedimentary Geology and Tethyan Geology, 28(3): 52−59(in Chinese with English abstract).

    Google Scholar

    [18] Wen Q B, Liu Y J, Liu B, et al. 2011. Exhumation time of Jiamusi−uplift of northeastern China constrained by ages of detrital minerals[J]. Geological Bulletin of China, 30(2/3): 250−257(in Chinese with English abstract).

    Google Scholar

    [19] Wilde S A. 2015. Final amalgamation of the Central Asian Orogenic Belt in NE China: Paleo−Asian Ocean closure versus Paleo−Pacific plate subduction—A review of the evidence[J]. Tectonophysics, 662: 345−362. doi: 10.1016/j.tecto.2015.05.006

    CrossRef Google Scholar

    [20] Wu F Y, Sun D Y, Ge W C, et al. 2011. Geochronology of the Phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences, 41: 1−30. doi: 10.1016/j.jseaes.2010.11.014

    CrossRef Google Scholar

    [21] Xu W L, Pei F P, Wang F, et al. 2013. Spatial–temporal relationships of Mesozoic volcanic rocks in NE China: Constraints on tectonic overprinting and transformations between multiple tectonic regimes[J]. Journal of Asian Earth Sciences, 74: 167−193. doi: 10.1016/j.jseaes.2013.04.003

    CrossRef Google Scholar

    [22] Yang C Z. 2014. Comparative study on Late Cretaceous tectonic inversion of Songliao Basin−Great Sanjiang Basin and its genetic relationships[D]. Doctoral Dissertation of China University of Geosciences(Wuhan): 73−93(in Chinese with English abstract).

    Google Scholar

    [23] Yu Y J, Zhao Z H, Li X P, et al. 2024. Geochronology, geochemistry and geological significance of early Jurassic granites in nothern Zhangguangcai Mountains[J]. Journal of Jilin University (Earth Science Edition), 54(4): 1224−1247(in Chinese with English abstract).

    Google Scholar

    [24] Zhang F Q, Chen H L, Geoffrey E B, et al. 2015. Detrital zircon U–Pb geochronology and stratigraphy of the Cretaceous Sanjiang Basin in NE China: Provenance record of an abrupt tectonic switch in the mode and nature of the NE Asian continental margin evolution[J]. Tectonophysics, 665: 58−78. doi: 10.1016/j.tecto.2015.09.028

    CrossRef Google Scholar

    [25] Zhang F Q, Chen H L, Yang S F, et al. 2012. Late Mesozoic–Cenozoic evolution of the Sanjiang Basin in NE China and its tectonic implications for the West Pacific continental margin[J]. Journal of Asian Earth Sciences, 49: 287−299. doi: 10.1016/j.jseaes.2011.12.017

    CrossRef Google Scholar

    [26] Zhang F Q, Dilek Y, Chen H L, et al. 2017. Structural architecture and stratigraphic record of Late Mesozoic sedimentary basins in NE China: Tectonic archives of the Late Cretaceous continental margin evolution in East Asia[J]. Earth−Science Reviews, 171: 598−620. doi: 10.1016/j.earscirev.2017.05.015

    CrossRef Google Scholar

    [27] Zhang S, Fang S, Shao H J, et al. 2020. A new zircon U–Pb age of 107.15 Ma for the Dongshan Formation, Boli Basin, Northeast China[J]. Acta Geologica Sinica, 94(2): 568−571. doi: 10.1111/1755-6724.14521

    CrossRef Google Scholar

    [28] Zhang X Z, Guo Z, Zeng Z, et al. 2015. Dynamic evolution of the Mesozoic−Cenozoic basins in the northeastern China[J]. Earth Science Frontiers, 22(3): 88−98(in Chinese with English abstract).

    Google Scholar

    [29] Zhao X Q, Yang S F, Chen H L, et al. 2012. Features of multistage Cretaceous conglomerate deposition and its palaeogeographic significance in Jixi Basin of eastern Heilongjiang, NE China[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 48(3): 419−432(in Chinese with English abstract).

    Google Scholar

    [30] Zhou J B, Han J, Wilde S A, et al. 2013. A primary study of the Jilin−Heilongjiang high−pressure metamorphic belt: Evidence and tectonic implications[J]. Acta Petrologica Sinica, 29(2): 386−398(in Chinese with English abstract).

    Google Scholar

    [31] Zhou J B, Pu X G, Hou H S, et al. 2018. The Mesozoic accretionary complex in NE China and its tectonic implications for the subduction of the Paleo−Pacific plate beneath the Eurasia[J]. Acta Petrologica Sinica, 34(10): 2845−2856(in Chinese with English abstract).

    Google Scholar

    [32] Zhou J B, Wilde S A, Zhang X Z, et al. 2009. The onset of Pacific margin accretion in NE China: Evidence from the Heilongjiang high−pressure metamorphic belt[J]. Tectonophysics, 478: 230−246. doi: 10.1016/j.tecto.2009.08.009

    CrossRef Google Scholar

    [33] Zhou J B, Wilde S A, Zhang X Z, et al. 2011. A >1300 km late Pan−African metamorphic belt in NE China: New evidence from the Xing'an block and its tectonic implications[J]. Tectonophysics, 509: 280−292. doi: 10.1016/j.tecto.2011.06.018

    CrossRef Google Scholar

    [34] Zhou J P, Dunkl I, Liu Y Q, et al. 2022. Late Cretaceous−Tertiary tectonic inversion of northeastern Asian continental margin: Insight from the low temperature thermochronology in NE China[J]. Gondwana Research, 102: 252−270. doi: 10.1016/j.gr.2020.05.017

    CrossRef Google Scholar

    [35] Zhou J P, Dunkl I, Liu Y Q, et al. 2023. Cretaceous source to sink system reconstruction of northeastern Asia continental margin: Insight from integrated detrital geochronology in NE China[J]. Geoscience Frontiers, 14: 101616. doi: 10.1016/j.gsf.2023.101616

    CrossRef Google Scholar

    [36] Zhu G, Lu Y C, Su N, et al. 2021. Crustal deformation and dynamics of Early Cretaceous in the North China Craton[J]. Science China: Earth Sciences, 64: 1428−1450. doi: 10.1007/s11430-020-9749-0

    CrossRef Google Scholar

    [37] 何承全, 孙学坤. 2000. 黑龙江省东部鸡西盆地城子河组下部早白垩世欧特里夫晚期海相沟鞭藻[J]. 古生物学报, 39(1): 46−62. doi: 10.3969/j.issn.0001-6616.2000.01.003

    CrossRef Google Scholar

    [38] 冀华丽, 何中波, 秦明宽, 等. 2020. 黑龙江省三江盆地鹤岗凹陷下白垩统猴石沟组沉积特征[J]. 地质论评, 66(1): 52−68.

    Google Scholar

    [39] 井佳浩, 杨浩, 高妍, 等. 2021. 佳木斯地块林口地区早古生代花岗质岩石的成因及构造背景[J]. 世界地质, 40(3): 547−559. doi: 10.3969/j.issn.1004-5589.2021.03.006

    CrossRef Google Scholar

    [40] 刘志宏, 梅梅, 高军义, 等. 2014. 东北东部虎林盆地的构造特征、成盆机制及敦−密断裂带北东段的形成时代[J]. 吉林大学学报(地球科学版), 44(2): 480−489.

    Google Scholar

    [41] 刘志宏, 周飞, 吴相梅, 等. 2011. 东北地区佳木斯隆起与周缘中新生代盆地群的耦合关系[J]. 吉林大学学报, 41(5): 1335−1344.

    Google Scholar

    [42] 任凤和, 杨晓平, 李仰春, 等. 2005. 黑龙江省东部鸡西群地层时代划分及地质意义[J]. 中国地质, 32(1): 48−54. doi: 10.3969/j.issn.1000-3657.2005.01.006

    CrossRef Google Scholar

    [43] 魏红艳, 孙德有, 叶松青, 等. 2012. 小兴安岭东南部伊春—鹤岗地区花岗质岩石锆石U−Pb年龄测年及其地质意义[J]. 地球科学, 37(增刊): 50−59.

    Google Scholar

    [44] 温泉波, 刘永江, 李俊杰, 等. 2008. 鸡西、勃利盆地白垩纪砂岩的物源分析及构造意义[J]. 沉积与特提斯地质, 28(3): 52−59.

    Google Scholar

    [45] 温泉波, 刘永江, 刘兵, 等. 2011. 碎屑矿物年代对佳木斯隆起隆升时间的制约[J]. 地质通报, 30(2/3): 250−257. doi: 10.3969/j.issn.1671-2552.2011.02.010

    CrossRef Google Scholar

    [46] 杨承志. 2014. 松辽盆地−大三江盆地晚白垩世构造反转作用对比及其成因联系[D]. 中国地质大学(武汉)博士学位论文: 73−93.

    Google Scholar

    [47] 于跃江, 赵忠海, 李新鹏, 等. 2024. 张广才岭北部早侏罗世花岗岩年代学、地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版), 54(4): 1224−1247.

    Google Scholar

    [48] 张兴洲, 郭治, 曾振, 等. 2015. 东北地区中—新生代盆地群形成演化的动力学背景[J]. 地学前缘, 22(3): 88−98.

    Google Scholar

    [49] 赵学钦, 杨树锋, 陈汉林, 等. 2012. 中国黑龙江东部鸡西盆地白垩纪多期砾岩特征及古地理意义[J]. 北京大学学报(自然科学版), 48(3): 419−432.

    Google Scholar

    [50] 周建波, 韩杰, Wilde S A, 等. 2013. 吉林−黑龙江高压变质带的初步厘定: 证据和意义[J]. 岩石学报, 29(2): 386−398.

    Google Scholar

    [51] 周建波, 蒲先刚, 侯贺晟, 等. 2018. 东北中生代增生杂岩及对古太平洋向欧亚大陆俯冲历史的制约[J]. 岩石学报, 34(10): 2845−2856.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(2)

Article Metrics

Article views(161) PDF downloads(98) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint