2025 Vol. 44, No. 5
Article Contents

NIE Hongfeng, XIAO Chunlei, LIU Jianyu, DAI Meng, LIU Gang, YUAN Guoli, ZHANG Ce. 2025. Theory, methodology and practice of the Eco-Geological Tupu. Geological Bulletin of China, 44(5): 735-745. doi: 10.12097/gbc.2024.01.019
Citation: NIE Hongfeng, XIAO Chunlei, LIU Jianyu, DAI Meng, LIU Gang, YUAN Guoli, ZHANG Ce. 2025. Theory, methodology and practice of the Eco-Geological Tupu. Geological Bulletin of China, 44(5): 735-745. doi: 10.12097/gbc.2024.01.019

Theory, methodology and practice of the Eco-Geological Tupu

  • Objective

    Since the deployment of the "Ecological Geological Survey" project by the China Geological Survey in 2019, eco-geology surveys have yielded multidimensional investigative results covering rocks, weathered crust, soil, hydrology, ecological patterns, and related issues nationwide. These findings, combined with factors such as geochemistry, climate and meteorology, topography, and human activities, have exceeded the traditional geological survey results in terms of graphical representation and content. Therefore, there is an urgent need for innovative forms of presenting these results to create a new type of geological survey map suitable for eco-geology surveys.

    Methods

    This article explored the concepts of maps, spectra and geoscientific tupu in conjunction with the essence of ecological geology and introduced the concept of the "Eco-Geological Tupu" as a novel form of geological survey representation. The article defined the eco-geological tupu, highlighted its significance, outlined its main components, discussed its graphical composition, and outlined the compilation process.

    Results

    The eco-geological tupu breaks through the limitations of traditional geological maps and comprehensively presents macro-scale remote sensing surveys, ground-based typical profile measurements, and microscopic testing and analysis results, thus achieving the integration of ecological and geological knowledge.

    Conclusions

    Through practical applications in the Bashang Plateau and the Guangxi-Guangdong hilly region, it has been demonstrated that the eco-geological tupu is a suitable means of expressing survey results that meet the foundational and public interest needs of geological surveys in the new era. It can serve as a crucial reference for ecological protection and restoration in national land space and as a decision-making tool for eco-civilization. However, the eco-geological tupu is still in its initial development stage. To enhance its service value in the future, it is recommended to strengthen the construction of a national eco-geological tupu database and work on the informationization and intelligentization of eco-geological tupu.

  • 加载中
  • [1] Blanco-Canqui H, Lal R. 2008. Principles of soil conservation and management[M]. Springer Science & Business Media.

    Google Scholar

    [2] Chen K Q. 2011. Emergence, development and usage of geologic maps[J]. Chinese Journal of Nature, 33(4): 222−230(in Chinese with English abstract).

    Google Scholar

    [3] Chen S P. 2001a. Exploratory research on geo-informatic Tupu [M]. The Commercial Press (in Chinese with English abstract).

    Google Scholar

    [4] Chen S P. 2001b. Along The historical way up to knowledge innovation[J]. Acta Geographica Sinica, 56(B09): 1−7(in Chinese with English abstract).

    Google Scholar

    [5] China Geological Survey. 2019. Technical requirements for regional geological survey (1∶50 000) [S]. DD 2019-01.

    Google Scholar

    [6] China Geological Survey. 2019. Technical requirements for ecogeological survey (1∶50 000) [S]. DD 2019-09.

    Google Scholar

    [7] Churchman G J, Lowe D J. 2012. Alteration, formation, and occurrence of minerals in soils[M]. CRC Press.

    Google Scholar

    [8] Fedo C M, Wayne Nesbitt H, Young G M. 1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance[J]. Geology, 23(10): 921−924. doi: 10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2

    CrossRef Google Scholar

    [9] Hahm W J, Riebe C S, Lukens C E, et al. 2014. Bedrock composition regulates mountain ecosystems and landscape evolution[J]. Proceedings of the National Academy of Sciences, 111(9): 3338−3343. doi: 10.1073/pnas.1315667111

    CrossRef Google Scholar

    [10] He Z W, Huang R Q, Sun C M, et al. 2003. A Brief Discussion on “Eco-Geology”[J]. Scientific and Technological Management of Land and Resources, 3: 69−72(in Chinese with English abstract).

    Google Scholar

    [11] Jiang Z, Liu H, Wang H, et al. 2020. Bedrock geochemistry influences vegetation growth by regulating the regolith water holding capacity[J]. Nature Communications, 11(1): 2392. doi: 10.1038/s41467-020-16156-1

    CrossRef Google Scholar

    [12] Kochetkov. 1998. Concept of Geoecological mapping in Russia[J]. Sichuan Geological Science and Technology Information, (4): 43−43(in Chineset).

    Google Scholar

    [13] Li J F. 2014. Geological survey work serving ecological civilization[J]. Resources Environment & Engineering, 28(1): 1−4(in Chinese with English abstract).

    Google Scholar

    [14] Li T D. 1999. Strengthening study and geological mapping of the Earth Surface System[J]. Quaternary Sciences, 19(3): 193−197(in Chinese with English abstract).

    Google Scholar

    [15] Liao K. 2002. The discussion and prospect for geo-informatic Tupu[J]. Journal of Geo-information Science, 4(1): 14−20(in Chinese with English abstract).

    Google Scholar

    [16] Liao K, Qin J X, Zhang Q N. 2001. On geo-informatic Tupu and digital Earth[J]. Geographical Research 20(1): 55−61(in Chinese with English abstract).

    Google Scholar

    [17] Liu C L, Zhang Y, Zhang J Y, et al. 2019. Compilation method of 1∶50 000 comprehensive engineering geological map[J]. Geological Survey of China, 6(1): 86−93(in Chinese with English abstract).

    Google Scholar

    [18] Mao P N, Pang J L, Huang C C, et al. 2017. Chemical weathering characteristics and regional comparative study of the loess deposits in the upper Hanjiang River[J]. Acta Geographica Sinica, 72(2): 279−291(in Chinese with English abstract).

    Google Scholar

    [19] McLennan S M. 1993. Weathering and global denudation[J]. The Journal of Geology, 101(2): 295−303. doi: 10.1086/648222

    CrossRef Google Scholar

    [20] Ministry of Land and Resources, PRC. 2014. Specifications for remote sensing interpretation of geological maps (1∶250 000) [S]. DZ/T 0264-2014(in Chinese).

    Google Scholar

    [21] Ministry of Natural Resources. 2023. Notice on issuing the "ecological base zoning of China's Land Territory (Trial)"[Z]. No. 19 [2023] of the General Office of the Ministry of Natural Resources. http://gi.mnr.gov.cn/202306/t20230614_2791436.html(in Chinese with English abstract).

    Google Scholar

    [22] Meng Q H, Yang Q Q, Xie H L , et al. 2019. Discussion on the compilation of environmental geological map of the economic zone in the Circum-Bohai-Sea region[J]. Geological Survey and Research, 42(2): 129−134(in Chinese with English abstract).

    Google Scholar

    [23] Nesbitt H W, Young G M. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 299(5885): 715−717. doi: 10.1038/299715a0

    CrossRef Google Scholar

    [24] Nie H F, Xiao C L, Dai M, et al. 2021a. Progress and Mainr Achievements of ecogeological survey project[J]. Geological Survey of China, 8: 1−12(in Chinese with English abstract).

    Google Scholar

    [25] Nie H F, Xiao C L, Guo Z C. 2019. Exploring the secrets of ecosystem operation and evolution: Interpretation of ecological geological survey ideas and methods[J]. Scientific and Cultural Popularization of Land and Resources, 21: 6−15(in Chinese with English abstract).

    Google Scholar

    [26] Nie H F, Xiao C L, Ren W X, et al. 2021b. Progress and prospects of ecogeological research[J]. Geological Survey of China, 8: 1−8(in Chinese with English abstract).

    Google Scholar

    [27] Nuclear Industry Standardization Institute, et al. 2014. Specification for geological map compilation of In-situ leachable sandstone-type uranium deposits—Part 8: Hydrogeochemical map [S]. EJ/T 20003.8-2011.

    Google Scholar

    [28] Parker K C, Bendix J. 1996. Landscape-scale geomorphic influences on vegetation patterns in four environments[J]. Physical Geography, 17(2): 113−141. doi: 10.1080/02723646.1996.10642577

    CrossRef Google Scholar

    [29] Peng H. 2011. Perspectives on the red beds landforms in humid area of Southern China and some related problems[J]. Geographical Research, 30(10): 1739-1752 (in Chinese with English abstract).

    Google Scholar

    [30] Peng H, Yan L B, Chen Z, et al. 2015, A preliminary study of desertification in red beds in the humid region of Southern China[J]. Acta Geographica Sinica, 70(11): 1699-1707(in Chinese with English abstract).

    Google Scholar

    [31] Qi A B, Liu J C. 1997. On the method of geoecological mapping[J]. Land and Resources Informatization, (2): 7−10.

    Google Scholar

    [32] Qi Q W, Chi T H. 2001. Researchon the theory and method of Geo-Info-TUPU[J]. Acta Geographica Sinica, 56: 8-18(10): 1739-1752.

    Google Scholar

    [33] Schulten H R, Leinweber P. 2000. New insights into organic-mineral particles: Composition, properties and models of molecular structure[J]. Biology and Fertility of Soils, 30: 399−432. doi: 10.1007/s003740050020

    CrossRef Google Scholar

    [34] Swanson F J, Kratz T K, Caine N, et al. 1988. Landform effects on ecosystem patterns and processes[J]. BioScience, 38(2): 92−98. doi: 10.2307/1310614

    CrossRef Google Scholar

    [35] Trofimov V T. 2001. Ecological geology——A noval branch of geological sciences[J]. Earth Science Frontiers, 8: 27−35.

    Google Scholar

    [36] Trofimov V T. 2004. Approaches, principles and criteria of evaluation of ecological, geological conditions[J]. Earth Science Frontiers, 11: 533−542.

    Google Scholar

    [37] Trofimov V T. 2008. Ecological geology, environmental geology, geoecology: Contents and relations[J]. Moscow University Geology Bulletin, 63: 59−69.

    Google Scholar

    [38] Unger F. 1836. Über den Einfluss des Bodens auf die Vertheilung der Gewächse: Nachgewiesen in der Vegetation des nordöstlichen Tirol's[M]. Bei Rohrmann und Schweigerd.

    Google Scholar

    [39] Von Marilaun A K. 1895. The natural history of plants, their forms, growth, reproduction, and distribution[M]. London: Blackie and Son.

    Google Scholar

    [40] Wang Q, Tang D X, Zhang Q Y, et al. 1991. Study on composition and structural characteristics of granite residual soils in Eastern China[J]. Journal of Jilin University(Earth Science Edition), (1): 73−81(in Chinese with English abstract).

    Google Scholar

    [41] Wang C S, Wang D K. 1997. On the 1∶50 000 ecological geological investigation[J]. Geological Bulletin of China, 16(1): 56−59 (in Chinese with English abstract).

    Google Scholar

    [42] Xing H X, Li L, Ge W Y, et al. 2019. Establishment of environmental geological map of economic zone on the west side of the Taiwan Straits based on the division of environmental geological problems[J]. Geological Review, 65(4): 1031−1037(in Chinese with English abstract).

    Google Scholar

    [43] Xiong Y, Chen J F. 1989. Soil Colloids (Volume 3): Properties of Soil Colloids [J]. Beijing: Science Press(in Chinese with English abstract).

    Google Scholar

    [44] Yang C J. 2020. The idea of geo-information tupu and its practices[J]. Journal of Geo-information Science, 22(4): 697-704(in Chinese with English abstract).

    Google Scholar

    [45] Zhang G L, Li DC. 2022. Field manual for soil description and sampling[M]. Beijing: Science Press(in Chinese with English abstract).

    Google Scholar

    [46] Zhang H Y, Wang Q M, Lu X J, et al. 2003, On geographic framework of geo-informatic Tupu method[J]. Journal of Geo-information Science, 5(4): 101−103(in Chinese with English abstract).

    Google Scholar

    [47] Zeng Q M, Wang Y P, Zhu H, et al. 2020, Research on the compilation of environmental geological map of the Guanzhong basin urban agglomeration[J]. Northwestern Geology, 53(1): 215-221(in Chinese with English abstract).

    Google Scholar

    [48] 陈克强. 2011. 地质图的产生、发展和使用[J]. 自然杂志, 33(4): 222−230,250-251.

    Google Scholar

    [49] 陈述彭. 2001a. 地学信息图谱探索研究[M]. 北京: 商务印书馆.

    Google Scholar

    [50] 陈述彭. 2001b. 历史轨迹与知识创新[J]. 地理学报, 56: 1−7.

    Google Scholar

    [51] 核工业标准化研究所, 等. 2014. 地浸砂岩型铀矿地质图件编制规定第8部分: 水文地球化学图. EJ/T 20003.8—2011.

    Google Scholar

    [52] 何政伟, 黄润秋, 孙传敏, 等. 2003. 浅议"生态地质学"[J]. 国土资源科技管理, (3): 69−72. doi: 10.3969/j.issn.1009-4210.2003.03.019

    CrossRef Google Scholar

    [53] 科切特科夫. 1998. 关于俄罗斯地质生态制图的构想[J]. 四川地质科技情报, (4): 43−43.

    Google Scholar

    [54] 李金发. 2014. 为生态文明服务的地质调查工作[J]. 资源环境与工程, 28(1): 1−4. doi: 10.3969/j.issn.1671-1211.2014.01.001

    CrossRef Google Scholar

    [55] 李廷栋. 1999. 加强地球表层系统的研究和地质制图工作[J]. 第四纪研究, (3): 193−197. doi: 10.3321/j.issn:1001-7410.1999.03.001

    CrossRef Google Scholar

    [56] 廖克. 2002. 地学信息图谱的探讨与展望[J]. 地球信息科学, (1): 14−20.

    Google Scholar

    [57] 廖克, 秦建新, 张青年. 2001. 地球信息图谱与数字地球[J]. 地理研究, (1): 55−61. doi: 10.3321/j.issn:1000-0585.2001.01.008

    CrossRef Google Scholar

    [58] 刘长礼, 张云, 张建羽, 等. 2019. 1∶5万综合工程地质图编制方法[J]. 中国地质调查, 6: 86−93.

    Google Scholar

    [59] 毛沛妮, 庞奖励, 黄春长, 等. 2017. 汉江上游黄土常量元素地球化学特征及区域对比[J]. 地理学报, (2): 279−291. doi: 10.11821/dlxb201702008

    CrossRef Google Scholar

    [60] 孟庆华, 杨齐青, 谢海澜, 等. 2019. 浅谈环渤海经济区环境地质图编图[J]. 地质调查与研究, 42(2): 129−134.

    Google Scholar

    [61] 聂洪峰, 肖春蕾, 戴蒙, 等. 2021a. 生态地质调查工程进展与主要成果[J]. 中国地质调查, 8: 1−12.

    Google Scholar

    [62] 聂洪峰, 肖春蕾, 郭兆成. 2019. 探寻生态系统运行与演化的秘密——生态地质调查思路及方法解读[J]. 国土资源科普与文化, 21: 6−15.

    Google Scholar

    [63] 聂洪峰, 肖春蕾, 任伟祥, 等. 2021b. 生态地质研究进展与展望[J]. 中国地质调查, 8: 1−8.

    Google Scholar

    [64] 彭华. 2011. 中国南方湿润区红层地貌及相关问题探讨[J]. 地理研究, 30(10): 1739−1752.

    Google Scholar

    [65] 彭华, 闫罗彬, 陈智, 等. 2015. 中国南方湿润区红层荒漠化问题[J]. 地理学报, 70: 1699−1707. doi: 10.11821/dlxb201511001

    CrossRef Google Scholar

    [66] 奇 A B, 刘吉成. 1997. 论地质生态制图方法[J]. 国土资源信息化, (2): 7−10.

    Google Scholar

    [67] 齐清文, 池天河. 2001. 地学信息图谱的理论和方法[J]. 地理学报, 56: 8−18. doi: 10.11821/xb20017s002

    CrossRef Google Scholar

    [68] 王清, 唐大雄, 张庆云等. 1991. 中国东部花岗岩残积土物质成分和结构特征的研究[J]. 长春地质学院学报, (1): 73−81.

    Google Scholar

    [69] 王长生, 王大可. 1997. 试论1∶5万生态地质调查[J]. 地质通报, 16(1): 56−59.

    Google Scholar

    [70] 邢怀学, 李亮, 葛伟亚, 等. 2019. 基于环境地质问题分区的海峡西岸经济区环境地质图编图研究[J]. 地质评论, 65: 1031−1038.

    Google Scholar

    [71] 熊毅, 陈家坊. 1989. 土壤胶体(第三册): 土壤胶体的性质[M]. 北京: 科学出版社.

    Google Scholar

    [72] 杨存建. 2020. 地学信息图谱思想与实践探索[J]. 地球信息科学学报, 22(4): 697−704. doi: 10.12082/dqxxkx.2020.200173

    CrossRef Google Scholar

    [73] 曾庆铭, 王祎萍, 朱桦, 等. 2020. 关中盆地城市群环境地质图编图研究[J]. 西北地质, 53(1): 215−221.

    Google Scholar

    [74] 张甘霖, 李德成. 2022. 野外土壤描述与采集手册[M]. 北京: 科学出版社.

    Google Scholar

    [75] 中国地质调查局. 2019a. 区域地质调查技术要求(1∶50 000)[S]. DD 2019—01.

    Google Scholar

    [76] 中国地质调查局. 2019b. 生态地质调查技术要求(1∶50 000)[S]. DD 2019—09.

    Google Scholar

    [77] 中华人民共和国自然资源部. 2014. 遥感解译地质图制作规范(1∶250 000)[S]. DZ/T 0264—2014.

    Google Scholar

    [78] 中华人民共和国自然资源部. 2023. 自然资源部办公厅关于印发《中国陆域生态基础分区(试行)》的通知. 自然资办发〔2023〕19号. http://gi.mnr.gov.cn/202306/t20230614_2791436.html.

    Google Scholar

    [79] 张洪岩, 王钦敏, 鲁学军, 等. 2003. 地学信息图谱方法研究的框架[J]. 地球信息科学学报, 5: 101−103. doi: 10.3969/j.issn.1560-8999.2003.04.021

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views(239) PDF downloads(35) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint