2025 Vol. 44, No. 6
Article Contents

WU Chengping, YU Changchun, ZHANG Dishuo, XIONG Shengqing, ZHU Yuzhen, HOU Zheng, GAO Xiuhe. 2025. Airborne-surface-borehole cooperative exploration technical system for magnetite exploration in areas with thick overburden. Geological Bulletin of China, 44(6): 1164-1173. doi: 10.12097/gbc.2023.12.042
Citation: WU Chengping, YU Changchun, ZHANG Dishuo, XIONG Shengqing, ZHU Yuzhen, HOU Zheng, GAO Xiuhe. 2025. Airborne-surface-borehole cooperative exploration technical system for magnetite exploration in areas with thick overburden. Geological Bulletin of China, 44(6): 1164-1173. doi: 10.12097/gbc.2023.12.042

Airborne-surface-borehole cooperative exploration technical system for magnetite exploration in areas with thick overburden

    Fund Project: Supported by China Geological Survey Project (No. DD20221640), ‌Shandong Provincial Geological Survey Project (No.SDGZ(2023)2) and National Key Research and Development Program of China (No. 2017YFC0602201)
More Information
  • Author Bio: WU Chengping, male, born in 1982, professor senior engineer, mainly engaged in aerogeophysical data processing and integrated interpretation; E−mail: chengpingwu@163.com
  • Corresponding author: YU Changchun, male, born in 1964, professor senior engineer, mainly engaged in the research of aeromagnetic methods and technologies as well as the interpretation of data; E−mail: bjycc@126.com 
  • Objective

    As an important part of deep prospecting, magnetite exploration in areas with thick overburden has some problems such as low exploration level, weak geophysical signals and huge prospecting difficulties. It is urgent to try and form an effective exploration technology system.

    Methods

    This paper employs multi−dimensional and multi−method airborne−surface−borehole exploration means, uses multi−source information and a step−by−step approach, which is: prospecting area——airborne−geophysical methods——surface geophysical methods and verification borehole——airborne−surface−borehole joint inversion——drilling. Key technologies such as airborne−surface−borehole exploration technique, extracting technique for integrated geological prospecting information, lithologic structural mapping and prospecting target delineating technique, airborne−magnetic and gravity joint inversion based on multi−information, 3D geological−geophysical modeling approach are used.

    Results

    In response to the characteristics of ore prospecting in areas with thick overburden, an airborne−surface−borehole cooperative exploration technical system for magnetite in such areas has been established. Magnetite has been found in several new boreholes following this technical system. The application of this technology system in Shandong Qihe demonstration area with thick overburden has improved the prospecting effect and achieved a breakthrough in high-grade magnetite ore prospecting.

    Conclusions

    This technical system, taking advantage of airborne−surface−borehole cooperative exploration, provides theoretical and technical support for magnetite prospecting in areas with thick overburden, and also provides reference for prospecting other types of deposits in similar areas.

  • 加载中
  • [1] Jessell M. 2001. Three−dimensional geological modelling of potential−field data[J]. Computers & Geosciences, 27(4): 455−465.

    Google Scholar

    [2] Wang W, Pan Y, Qiu Z. 2009. A new edge recognition technology based on the normalized vertical derivative of the total horizontal derivative for potential field data[J]. Applied Geophysics, 6(3): 226−233, 299. doi: 10.1007/s11770-009-0026-x

    CrossRef Google Scholar

    [3] Chen H L, Wu L S. 2017. China has established an exploration technology system for gas hydrates[J]. Geological Equipment, 18(4): 7−8(in Chinese with English abstract ).

    Google Scholar

    [4] Guan Z N, Hou J S, Yao C L. 1996. Application of aeromagnetic gradient data in geological mapping and metallogenetic prognosis of gold deposits[J]. Geoscience, 10(2): 239−249 (in Chinese with English abstract).

    Google Scholar

    [5] Hao X Z, Zheng J M, Liu W, et al. 2020. Metallogenic prediction of skarn−type iron deposits in the Qihe−Yucheng area, Shandong Province[J]. Acta Geoscientica Sinica, 41(2): 293−302(in Chinese with English abstract).

    Google Scholar

    [6] Hao X Z, Xiao K Y, Wang Q Y, et al. 2023. Metallogenic regularity and potential analysis of iron ore in Shandong Province[J]. Acta Geoscientica Sinica, 44(5): 834−848(in Chinese with English abstract).

    Google Scholar

    [7] Han Z H, Wu Y G, Zhang C H, et al. 2010. Extracting weak anomaly in gravity and magnetic field with self−correlation filtering method[J]. Global Geology, 29(1): 124−129(in Chinese with English abstract).

    Google Scholar

    [8] Han, Z Y, WU Y, Yang J S, et al. 2007. Research on the technical method system for groundwater exploration in seriously water−deficient areas in the western region[J]. Journal of Hydrogeology and Engineering Geology, (2): 81 – 86(in Chinese with English abstract).

    Google Scholar

    [9] Huang X Z, Fan Z G, He J Z, et al. 2022. A collaborative airborne, ground, and borehole exploration technology system for concealed magmatic copper−nickel deposits[J]. Geophysical and Geochemical Exploration, 46(3): 597−607(in Chinese with English abstract).

    Google Scholar

    [10] Institute of Geophysical and Geochemical Exploration. 2014. Establishment of the detection technology system for concealed ore deposits in basins in China[J]. Geological Equipment, 15(4): 4−5(in Chinese).

    Google Scholar

    [11] Li F T, Miao H L, Fu J, et al. 2023. Gravity and magnetic anomalies and prospecting prediction of iron−polymetallic deposits in the lower reaches of the Nalinguole River[J]. Northwestern Geology, 56(6): 155 − 165(in Chinese with English abstract).

    Google Scholar

    [12] Li Z X, Wang T, Wang H H, et al. 2011. Theory and technical system study on multiple energy mineral resources exploration in coodination[J]. Coal Geology of China, 23(4): 68−72(in Chinese with English abstract).

    Google Scholar

    [13] Liang J W. 1981. Experimental results of a nonlinear filtering method[J]. Electronic Computing Techniques for Geophysical and Geochemical Exploration, (2): 22 − 28(in Chinese).

    Google Scholar

    [14] Liu C, Sun D L, Wu W B, et al. 2022. Analysis and prospect of precise prevention and control technical system ahead of large areas and time for gas disasters in China[J]. Coal Geology & Exploration, 50(8): 82−92(in Chinese with English abstract).

    Google Scholar

    [15] Liu Y, Lü Q T, Yan J Y, et al. 2012. The structure of Luzong ore district and its metallogenic indication from gravity and magnetic information[J]. Acta Petrologica Sinica, 28(10): 3125–3138(in Chinese with English abstract).

    Google Scholar

    [16] Man W. 2009. Study on Uranium prospecting and exploration technical system based on high resolution remote sensing[J]. Journal of Xiamen University of Technology, 17(3): 33−36(in Chinese with English abstract).

    Google Scholar

    [17] Qi G, Lü Q T, Yan J Y, et al. 2012. Geologic constrained 3D gravity and magnetic modeling of Nihe deposit—A case study[J]. Chinese J. Geophys, 55(12): 4194−4206(in Chinese with English abstract).

    Google Scholar

    [18] Shi C Y, Wang H Y. 2022. A system of techniques and methods for three−dimensional geochemical exploration for finding deep concealed mineral resources[J]. Acta Geologica Sinica, 96(11): 3705−3721(in Chinese with English abstract).

    Google Scholar

    [19] Shi R, Zhang Y H, Lu M J, et al. 2018. 3D metallogenic prediction based on geological and gravity−magnetic data integration in the Qian’an iron ore concentration area, Hebei Province[J]. Acta Geoscientica Sinica, 39(6): 762−770(in Chinese with English abstract).

    Google Scholar

    [20] Wu C P, Yu C C, Wang W P, et al. 2019. Physical characteristics of rocks and ores and their application in Qihe area, Western Shandong[J]. Advances in Earth Science, 34(10): 1099−1107 (in Chinese with English abstract).

    Google Scholar

    [21] Wu C P, Yu C C , Zhou M L, et al. 2020. Residual calculation of airborne and ground magnetic field and its prospecting application in heavily covered plain area[J]. Progress in Geophysics, 35(2): 663–668 (in Chinese with English abstract).

    Google Scholar

    [22] Wu C P, Yu C C, Zhou M L, et al. 2022. Method and effect of delineating concealed plutons with airborne gravity and magnetic data in the Qihe thick coverage area of Shandong Province[J]. Geological Bulletin of China, 41(2/3): 398–406 (in Chinese with English abstract).

    Google Scholar

    [23] Yan J Y, Lü Q T, Chen X B, et al. 2014. 3D lithologic mapping test based on 3D inversion of gravity and magnetic data: A case study in Lu−Zong ore concentration district, Anhui Province[J]. Acta Petrologica Sinica, 30(4): 1041–1053 (in Chinese with English abstract).

    Google Scholar

    [24] Yao Y L. 2016. Analysis on comprehensive exploration technology system of coal resources in China at present stage[J]. Coal Mine Machinery, 37(10): 1−2 (in Chinese with English abstract).

    Google Scholar

    [25] Zhan W F. 2018. Coalmine geological anomalous body multi−field integrated geophysical prospecting technological system and practices[J]. Coal Geology of China, 30(9): 62−66 (in Chinese with English abstract).

    Google Scholar

    [26] Zhu R X, Jin Z J, Di Q Y, et al. 2023. Research and progress of intelligent drilling technology system and related theories[J]. Chinese J. Geophys. 66(1): 1−15(in Chinese with English abstract).

    Google Scholar

    [27] Zhu Y Z, Zhang W Y, Shao G H, et al. 2024. Application of distributed 3D wide field electromagnetic method in the exploration of high−grade iron ore in the thick covered area of Litun in Qihe−Yucheng, Shandong Province[J]. Geological Bulletin of China, 43(9): 1555−1564 (in Chinese with English abstract).

    Google Scholar

    [28] Zuo Q C. 2015. The technological system for design, development and application of data model and data integration of mineral resources potential evaluation in China[J]. Geological Bulletin of China, 34(12): 2334–2351 (in Chinese with English abstract).

    Google Scholar

    [29] 陈惠玲, 吴庐山. 2017.我国建成天然气水合物勘探技术体系[J]. 地质装备, 18(4): 7−8.

    Google Scholar

    [30] 管志宁, 侯俊胜, 姚长利. 1996. 航磁梯度资料在金矿地质填图和成矿预测中的应用[J]. 现代地质, 10(2): 239−249.

    Google Scholar

    [31] 郝兴中, 郑金明, 刘伟, 等. 2020. 山东省齐河—禹城地区矽卡岩型铁矿成矿预测[J]. 地球学报, 41(2): 293−302. doi: 10.3975/cagsb.2020.011401

    CrossRef Google Scholar

    [32] 郝兴中, 肖克炎, 王巧云, 等. 2023.山东铁矿成矿规律及潜力分析[J]. 地球学报, 44(5): 834−848.

    Google Scholar

    [33] 韩兆红, 吴燕冈, 张成海, 等. 2010. 自相关滤波法提取重磁场中弱异常[J]. 世界地质, 29(1): 124−129.

    Google Scholar

    [34] 韩子夜, 武毅, 杨进生, 等. 2007. 西部严重缺水地区地下水勘查技术方法体系研究[J]. 水文地质工程地质, (2): 81−86. doi: 10.3969/j.issn.1000-3665.2007.02.019

    CrossRef Google Scholar

    [35] 黄旭钊, 范正国, 何敬梓, 等. 2022. 隐伏岩浆型铜镍矿空−地−井协同勘查技术体系[J]. 物探与化探, 46(3): 597−607.

    Google Scholar

    [36] 姜振寰, 吴明泰, 王海山, 等. 1990. 技术学辞典[M]. 沈阳: 辽宁科学技术出版.

    Google Scholar

    [37] 李凤廷, 苗虎林, 付佳, 等. 2023. 那陵郭勒河下游重磁异常与铁多金属矿找矿预测[J]. 西北地质, 56(6): 155−165. doi: 10.12401/j.nwg.2023185

    CrossRef Google Scholar

    [38] 李增学, 王佟, 王怀洪, 等. 2011. 多能源矿产协同勘查理论与技术体系研究[J]. 中国煤炭地质, 23(4): 68−72. doi: 10.3969/j.issn.1674-1803.2011.04.15

    CrossRef Google Scholar

    [39] 梁锦文. 1981. 一种非线性滤波方法的试验效果[J]. 物探化探电子计算技术, (2): 22−28.

    Google Scholar

    [40] 刘程, 孙东玲, 武文宾, 等. 2022. 我国煤矿瓦斯灾害超前大区域精准防控技术体系及展望[J]. 煤田地质与勘探, 50(8): 82−92. doi: 10.12363/issn.1001-1986.21.12.0869

    CrossRef Google Scholar

    [41] 刘彦, 吕庆田, 严加永, 等. 2012. 庐枞矿集区结构特征重磁研究及其成矿指示[J]. 岩石学报, 28(10): 3125−3138.

    Google Scholar

    [42] 满旺. 2009. 高分辨率遥感铀矿地质勘查技术体系研究[J]. 厦门理工学院学报, 17(3): 33−36. doi: 10.3969/j.issn.1673-4432.2009.03.007

    CrossRef Google Scholar

    [43] 祁光, 吕庆田, 严加永, 等. 2012. 先验地质信息约束下的三维重磁反演建模研究——以安徽泥河铁矿为例[J]. 地球物理学报, (12): 4194−4206. doi: 10.6038/j.issn.0001-5733.2012.12.031

    CrossRef Google Scholar

    [44] 邱道持, 柳源, 许江, 等. 2006. 重庆市地质灾害监测预警与防治技术体系研究及示范[R].

    Google Scholar

    [45] 史长义, 王惠艳. 2022. 深部矿产资源立体地球化学勘查方法技术体系[J]. 地质学报, 96(11): 3705−3721. doi: 10.3969/j.issn.0001-5717.2022.11.003

    CrossRef Google Scholar

    [46] 史蕊, 张颖慧, 卢民杰, 等. 2018. 基于地质与重磁数据集成的河北迁安铁矿集区三维成矿预测[J]. 地球学报, 39(6): 762−770. doi: 10.3975/cagsb.2018.081302

    CrossRef Google Scholar

    [47] 吴成平, 于长春, 王卫平, 等. 2019. 鲁西齐河地区岩(矿)石物性特征及应用[J]. 地球科学进展, 34(10): 1099−1107. doi: 10.11867/j.issn.1001-8166.2019.10.1099

    CrossRef Google Scholar

    [48] 吴成平, 于长春, 周明磊, 等. 2020. 空地磁残差计算在平原厚覆盖区找矿应用[J]. 地球物理学进展, 35(2): 663−668. doi: 10.6038/pg2020DD0007

    CrossRef Google Scholar

    [49] 吴成平, 于长春, 周明磊, 等. 2022. 航空重磁在山东齐河厚覆盖区圈定隐伏岩体的方法及效果[J]. 地质通报, 41(2−13): 398−406. doi: 10.12097/j.issn.1671-2552.2022.2-3.017

    CrossRef Google Scholar

    [50] 严加永, 吕庆田, 陈向斌, 等. 2014. 基于重磁反演的三维岩性填图试验——以安徽庐枞矿集区为例[J]. 岩石学报, 30(4): 1041−1053.

    Google Scholar

    [51] 姚艳领. 2016. 现阶段我国煤炭资源综合勘查技术体系分析[J]. 煤矿机械, 37(10): 1−2.

    Google Scholar

    [52] 占文锋. 2018. 矿井地质异常体多场联合探测技术体系及实践分析[J]. 中国煤炭地质, 30(9): 62−66. doi: 10.3969/j.issn.1674-1803.2018.09.12

    CrossRef Google Scholar

    [53] 中国地质科学院地球物理地球化学勘查研究所. 2014. 我国建立盆地隐伏矿探测技术体系[J]. 地质装备, 15(4): 4−5. doi: 10.3969/j.issn.1009-282X.2014.04.003

    CrossRef Google Scholar

    [54] 朱日祥, 金之钧, 底青云, 等. 2023. 智能导钻技术体系与相关理论研发进展[J]. 地球物理学报, 66(1): 1−15. doi: 10.6038/cjg2022Q0730

    CrossRef Google Scholar

    [55] 朱裕振, 张文艳, 邵贵航, 等. 2024. 分布式三维广域电磁法在山东齐河—禹城李屯厚覆盖区富铁矿勘查中的应用[J]. 地质通报, 43(9): 1555−1564. doi: 10.12097/gbc.2022.09.023

    CrossRef Google Scholar

    [56] 左群超. 2015. 矿产资源潜力评价数据模型研发、应用与数据集成方法技术体系[J]. 地质通报, 34(12): 2334−2351. doi: 10.3969/j.issn.1671-2552.2015.12.020

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views(171) PDF downloads(54) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint