2024 Vol. 43, No. 6
Article Contents

LIU Shuai, WANG Tao, CAO Jiawen, LIU Jiamei, ZHANG Shuai, XIN Peng. 2024. Susceptibility assessment of precipitation-induced mass landslides based on optimal random forest model: Taking the extreme precipitation event in western Qinling mountains as an example. Geological Bulletin of China, 43(6): 958-970. doi: 10.12097/gbc.2023.11.008
Citation: LIU Shuai, WANG Tao, CAO Jiawen, LIU Jiamei, ZHANG Shuai, XIN Peng. 2024. Susceptibility assessment of precipitation-induced mass landslides based on optimal random forest model: Taking the extreme precipitation event in western Qinling mountains as an example. Geological Bulletin of China, 43(6): 958-970. doi: 10.12097/gbc.2023.11.008

Susceptibility assessment of precipitation-induced mass landslides based on optimal random forest model: Taking the extreme precipitation event in western Qinling mountains as an example

More Information
  • Random forest model (RF) is one of the widely used machine learning models for landslide susceptibility assessment. Aiming at the difficult problems that restrict the application quality of random forest model assessment, taking more than 20000 extreme rainfall landslides induced by extreme rainfall in Niangniangba Town, western Qinling Mountains as an example, the model optimization and comparison with conventional model evaluation were carried out mainly from four aspects: landslide−non−landslide sample screening method, influence factor selection, coupling method application and hyper−parameter optimization. Based on the above optimization, the regional landslide susceptibility evaluation and effectiveness comparison of typical towns−Niangniangba Town are carried out. The evaluation of both situations has achieved ideal results. The optimized random forest evaluation result AUC can reach 0.877, which is better than the conventional assessment results. It shows that the optimization method can obviously improve the assessment effect and learning efficiency of random forest model in regional rainfall landslide, and can provide reference for the risk assessment of extreme rainfall landslide hazard under the background of climate change.

  • 加载中
  • [1] Abbas F, Zhang F, Ismail M, et al. 2023. Optimizing machine learning algorithms for landslide susceptibility mapping along the Karakoram Highway, Gilgit Baltistan, Pakistan: A comparative study of baseline, bayesian, and metaheuristic hyperparameter optimization techniques[J]. Sensors (Basel, Switzerland), 23(15): 6843.

    Google Scholar

    [2] Achu A L, Aju C D, Di N M, et al. 2023. Machine−learning based landslide susceptibility modelling with emphasis on uncertainty analysis[J]. Geoscience Frontiers, 14(6): 101657. doi: 10.1016/j.gsf.2023.101657

    CrossRef Google Scholar

    [3] Ado M, Amitab K, Maji A K, et al. 2022. Landslide susceptibility mapping using machine learning: A literature survey[J]. Remote Sensing, 14(13): 3029. doi: 10.3390/rs14133029

    CrossRef Google Scholar

    [4] Ahmad A, Farida M, Juita N, et al. 2023. Soil micromorphology for modeling spatial on landslide susceptibility mapping: A case study in Kelara subwatershed, Jeneponto Regency of South Sulawesi, Indonesia[J]. Natural Hazards, 118(2): 1445−1462. doi: 10.1007/s11069-023-06063-1

    CrossRef Google Scholar

    [5] Alvioli M M, Melillo F, Guzzetti M, et al. 2018. Implications of climate change on landslide hazard in Central Italy[J]. Sci. Total Environ., 630: 1528−1543. doi: 10.1016/j.scitotenv.2018.02.315

    CrossRef Google Scholar

    [6] Bui D, Tsangartos P, Nguyen T, et al. 2020. Comparing the prediction performance of a deep learning neural network model with conventional machine leaning models in landside susceptibility assessment[J]. Catena, 188: 104426. doi: 10.1016/j.catena.2019.104426

    CrossRef Google Scholar

    [7] Danika S, Edward M C, Sylvia H M, et al. 2019. A Mixed−Methods Evaluation of a gender affirmative education program for families of trans young people[J]. Journal of GLBT Family Studies, 16(1): 18−31.

    Google Scholar

    [8] Deng H, Wu X T, Zhang W J, et al. 2022. Slope−unit scale landslide susceptibility mapping based on the random forest model in deep valley areas[J]. Remote Sensing, 14(17): 4245. doi: 10.3390/rs14174245

    CrossRef Google Scholar

    [9] Du G L, Zhang Y S, Iqbal J, et al. 2017. Landslide susceptibility mapping using an integrated model of information value method and logistic regression in the Bailongjiang watershed, Gansu Province, China[J]. Journal of Mountain Science, 14(2): 249−268. doi: 10.1007/s11629-016-4126-9

    CrossRef Google Scholar

    [10] Guilherme G O, Luis F C, Laurindo A G, et al. 2019. Random forest and artificial neural networks in landslide susceptibility modeling: a case study of the Fão River Basin, Southern Brazil[J]. Natural Hazards, 99(2): 1049−1073. doi: 10.1007/s11069-019-03795-x

    CrossRef Google Scholar

    [11] Havenith H B, Torgoev A, Schlöge R, et al. 2015. Tienshan geohazards database: Landslide susceptibility analysis[J]. Geomorphology, 249: 2856.

    Google Scholar

    [12] Huang F M, Chen J W, Liu W P, et al. 2022. Regional rainfall−induced landslide hazard warning based on landslide susceptibility mapping and a critical rainfall threshold[J]. Geomorphology, 408: 108236. doi: 10.1016/j.geomorph.2022.108236

    CrossRef Google Scholar

    [13] Isidro C, Miguel A C, Francisco G, et al. 2019. A ROC analysis−based classification method for landslide susceptibility maps[J]. Landslides, 16(2): 265−282. doi: 10.1007/s10346-018-1063-4

    CrossRef Google Scholar

    [14] Jie D, Ali P Y, Abdelaziz M, et al. 2020. Different sampling strategies for predicting landslide susceptibilities are deemed less consequential with deep learning[J]. Science of the Total Environment, 720: 137320. doi: 10.1016/j.scitotenv.2020.137320

    CrossRef Google Scholar

    [15] Ke W, Chang M W, Fang Qi, et al. 2012. Search of the most dangerous in slide slope stability analysis based on genetic algorithm[J]. Applied Mechanics and Materials, 1799: 166−169.

    Google Scholar

    [16] Khan R, Yousaf S, Haseeb, A, et al. 2021. Exploring a Design of landslide monitoring system[J]. Complexity, 2021: 1−13.

    Google Scholar

    [17] Li R, Huang S Y, Dou H Q. 2023. Dynamic risk assessment of landslide hazard for large−scale photovoltaic power plants under extreme rainfall conditions[J]. Water, 15(15): 2832. doi: 10.3390/w15152832

    CrossRef Google Scholar

    [18] Ma S Y, Shao X Y, Xu C, et al. 2023. Physically−based rainfall−induced landslide thresholds for the Tianshui area of Loess Plateau, China by TRIGRS model[J]. Catena, 233: 107499. doi: 10.1016/j.catena.2023.107499

    CrossRef Google Scholar

    [19] María C H, Laura P C, Iván L H, et al. 2023. Landslide susceptibility analysis on the vicinity of Bogotá−Villavicencio road (Eastern Cordillera of the Colombian Andes)[J]. Remote Sensing, 15(15): 3870. doi: 10.3390/rs15153870

    CrossRef Google Scholar

    [20] Reichenbach P M, Rossi B D, Malamud M M, et al. 2018. A review of statistically−based landslide susceptibility models[J]. Earth−Science Reviews 180: 60−91.

    Google Scholar

    [21] Sun D L, Wen H J, Wang D Z, et al. 2020. A Random Forest Model of landslide susceptibility mapping based on Hyperparameter Optimization using bayes algorithm[J]. Geomorphology, 362: 107201.

    Google Scholar

    [22] Tareq H M, Juhari M A, Abdul G R, et al. 2011. Landslide susceptibility assessment using frequency ratio model applied to an area along the E−W highway (Gerik−Jeli)[J]. American Journal of Environmental Sciences, 7(1): 47−56.

    Google Scholar

    [23] Wen F, Xin S W, Yan B C, et al. 2017. Landslide susceptibility assessment using the certainty factor and analytic hierarchy process[J]. Journal of Mountain Science, 14(5): 906−925. doi: 10.1007/s11629-016-4068-2

    CrossRef Google Scholar

    [24] Yang H, Shi P, Quincey D. et al. 2023. A heterogeneous sampling strategy to model earthquake−triggered landslides[J]. Int. J. Disaster Risk Sci., 14(4): 636−648.

    Google Scholar

    [25] Yao J, Qin S, Qiao S, et al. 2022. Application of a two−step sampling strategy based on deep neural network for landslide susceptibility mapping[J]. Bulletin of Engineering Geology and the Environment, 81: 1−20. doi: 10.1007/s10064-021-02521-x

    CrossRef Google Scholar

    [26] Yao X, Tham L, Dai F, et al. 2008. Landslide susceptibility mapping based on support vector machine: A case study on natural slopes of Hong Kong, China[J]. Geomorphology, 101: 572−582. doi: 10.1016/j.geomorph.2008.02.011

    CrossRef Google Scholar

    [27] Youssef A M, Pourg H, Hamid R, et al. 2016. Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia[J]. Landslides, 13(5): 839. doi: 10.1007/s10346-015-0614-1

    CrossRef Google Scholar

    [28] 郭飞, 赖鹏, 陈洋, 等. 2022. 不同环境因子联接方法对崩岗易发性评价的影响[J]. 水土保持通报, (425): 123−130.

    Google Scholar

    [29] 郭飞, 赖鹏, 黄发明, 等. 2023. 基于知识图谱的滑坡易发性评价文献综述及研究进展[J/OL]. 地球科学, 1−33. [2024−05−14]. http://kns.cnki.net/kcms/detail/42.1874.P.20230713.1234.002.html.

    Google Scholar

    [30] 郭富赟, 孟兴民, 黎志恒, 等. 2015. 天水市“7·25”群发性地质灾害特征及成因[J]. 山地学报, 33(1): 100−107.

    Google Scholar

    [31] 黄发明, 殷坤龙, 蒋水华, 等. 2018. 基于聚类分析和支持向量机的滑坡易发性评价[J]. 岩石力学与工程学报, 37(1): 156−167.

    Google Scholar

    [32] 黄森. 2021. 天水市“7·25”群发性降雨滑坡灾害预警模型研究[D]. 西北大学硕士学位论文.

    Google Scholar

    [33] 李霞, 宿星, 张满银, 等. 2023. 基于证据权法与多源数据的陇中生态脆弱区滑坡敏感性评价——以天水市为例[J]. 冰川冻土, 45(1): 67−79.

    Google Scholar

    [34] 刘帅, 朱杰勇, 杨得虎, 等. 2023. 基于斜坡单元与随机森林模型的元阳县崩滑地质灾害易发性评价[J]. 中国地质灾害与防治学报, 34(4): 144−150.

    Google Scholar

    [35] 孟晓捷, 张新社, 曾庆铭, 等. 2022. 基于加权信息量法的黄土滑坡易发性评价——以1∶5万天水市麦积幅为例[J]. 西北地质, 55(2): 249−259.

    Google Scholar

    [36] 唐辉明, 鲁莎. 2018. 三峡库区黄土坡滑坡滑带空间分布特征研究[J]. 工程地质学报, 26(1): 129−136.

    Google Scholar

    [37] 吴润泽, 胡旭东, 梅红波, 等. 2021. 基于随机森林的滑坡空间易发性评价: 以三峡库区湖北段为例[J]. 地球科学, 46: 321−330.

    Google Scholar

    [38] 许强, 黄润秋, 李秀珍. 2004. 滑坡时间预测预报研究进展[J]. 地球科学进展, (3): 478−483.

    Google Scholar

    [39] 殷跃平, 高少华. 2024. 高位远程地质灾害研究: 回顾与展望[J]. 中国地质灾害与防治学报, 35(1): 1−18.

    Google Scholar

    [40] 周晓亭, 黄发明, 吴伟成, 等. 2022. 基于耦合信息量法选择负样本的区域滑坡易发性预测[J]. 工程科学与技术, 54(3): 25−35.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(13)

Tables(5)

Article Metrics

Article views(1251) PDF downloads(109) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint