2024 Vol. 43, No. 9
Article Contents

JIANG Xiaojie, LIU Songnan, ZHOU Liyun, CHEN Xin, WANG Yu. 2024. Difference of the syn–tectonic magmatic flow and granite emplacement under stable tectonic environment and its constrain on the Late Paleozoic to Early Mesozoic tectonic evolution in the northern margin of North China plate. Geological Bulletin of China, 43(9): 1636-1649. doi: 10.12097/gbc.2023.09.029
Citation: JIANG Xiaojie, LIU Songnan, ZHOU Liyun, CHEN Xin, WANG Yu. 2024. Difference of the syn–tectonic magmatic flow and granite emplacement under stable tectonic environment and its constrain on the Late Paleozoic to Early Mesozoic tectonic evolution in the northern margin of North China plate. Geological Bulletin of China, 43(9): 1636-1649. doi: 10.12097/gbc.2023.09.029

Difference of the syn–tectonic magmatic flow and granite emplacement under stable tectonic environment and its constrain on the Late Paleozoic to Early Mesozoic tectonic evolution in the northern margin of North China plate

More Information
  • Granitic magma constitute the important components of continental crust, a lot of researches have done on the structural deformation and fundamental framework of the Yanshan area on the northern margin of the North China plate. However, dynamic setting of granite intrusions was less studied. Different from granite intrusions in relatively stable tectonic setting, syn–tectonic magmatic flow usually occurs in active tectonic zones such as continental margin and orogenic belt, the characteristics, intrusion process and flow direction of syn–tectonic granite are usually complicated affected by strongest tectonic stress field. Large quantities of granitic magma intruded in the northern margin of the North China plate during the Late Paleozoic, and their tectonic properties and analysis provide crucial evidence for the study of subduction of Paleo−Asian Ocean and the destruction of the North China plate. By analyzing the structural deformation and petrographic characteristics of Danguangding pluton and Panshan pluton in the northern margin of North China plate from macro to micro, semi–quantitative mineralogical study was combined with electron microprobe, and the pressure conditions of pluton formation are calculated by using hornblende manometer to obtain the depth of granite intrusions, and the tectonic setting in the northern margin of the North China plate under different dynamic backgrounds is discussed. On the outcrop scale, the granodiorite shows a large number of rootless folds with a north axial direction and low axial plane angle, and the long axes of inclusions and xenoliths are parallel to the flow foliation. Under the microscope, dark minerals such as amphibole and biotite can be seen in directional arrangement, with typical syn–tectonic deformation characteristics. The crystallization pressure of the all–aluminum gauge of amphibole is 3.62~5.64 kbar. Corresponding to the depth of the middle crust (12.86~22.99 km), it is believed that during the Late Paleozoic (320~290 Ma), the middle and lower crust on the northern margin of the North China plate remelted to form a syn–tectonic magmatic flow from north to south, which also provided a medium for the stress transfer in the middle and deep layers. This indicates that the remelting of the middle and lower crust on the northern margin of the North China plate in the Late Paleozoic was formed by syn–tectonic magmatic flow from north to south, which formed the Daguangding pluton and also provided a medium for the stress transfer in the middle and deep layers. The inclusions and xenoliths in Panshan granite are not deformed in Mesozoic, and there is no directional arrangement of dark minerals, marble is formed by thermal contact metamorphism in the contact zone between pluton and surrounding rock, which belongs to granite intrusions in relatively stable tectonic setting.

  • 加载中
  • [1] Anderson J L, Smith D R. 1995. The effect of temperature and oxygen fugacity on Al−in−hornblende barometry[J]. American mineralogist, 80: 549−559. doi: 10.2138/am-1995-5-614

    CrossRef Google Scholar

    [2] Anderson J L. 1996. Status of thermobarometry in granitic batholiths[J]. Transactions of the Royal Society of Edinburgh, 87(1/2): 125−138.

    Google Scholar

    [3] Anderson J L, Barth A P, Wooden J L, et al. 2008. Thermometers and thermobarometers in granitic systems[J]. Reviews in Mineralogy and Geochemistry, 69(1): 121−142. doi: 10.2138/rmg.2008.69.4

    CrossRef Google Scholar

    [4] Archanjo C J. 2020. Composite magmatic/magnetic fabrics evidences late AMS in syn−tectonic dikes in the Monteiro−Sume plutonic−volcanic complex (NE Brazil)[J]. Journal of Structural Geology, 140: 104154.1−104154.16.

    Google Scholar

    [5] Bettioui D, Liegeois J P, Fettous E H, et al. 2022. Syn−kinematic emplacement of granitic batholith and leucogranite along the extensional detachment shear zone system of the Tin Begane area, Laouni terrane (LATEA metacraton, Central Hoggar, Algeria)[J]. Precambrian Research, 368: 106484. doi: 10.1016/j.precamres.2021.106484

    CrossRef Google Scholar

    [6] Bose S, Adlakha V, Pundir S. 2022. Submagmatic flow to solid−state ductile deformation of the Karakoram Batholith, India: insights into syn−tectonic cooling and exhumation[J]. International Journal of Earth Sciences, 111(7): 2337−2352. doi: 10.1007/s00531-022-02236-8

    CrossRef Google Scholar

    [7] Cao H H. 2013. Geochronology and geochemical of the Late Paleozoic−Early Mesozoic igneous rocks in the eastern segment of the northern margin of the North China Block[D]. Ph. D. Dissertation of Jilin University: 100−122(in Chinese with English abstract).

    Google Scholar

    [8] Ellwood B B, Whitney J A. 1980. Magnetic fabric of the Elberton granite, northeast Georgia[J]. Journal of Geophysical Research, 85: 1481−1486. doi: 10.1029/JB085iB03p01481

    CrossRef Google Scholar

    [9] Fu J Y, Na F C, Li Y C, et al. 2021. Southward subduction of the Mongo−Okhotsk Ocean Middle Triassic magmatic records of the Luomahu Group in northwest of Lesser Khingan Mountains[J]. Geological Bulletin of China, 40(6): 889−904(in Chinese with English abstract).

    Google Scholar

    [10] Gong M, Cai J H, Yan G H, et al. 2019. Petrogeochemical characteristics and zircon SHRIMP U−Pb ages of the alkaline intrusions on northern side of the Yinshan Mountains−Yanshan Mountains and their tectonic significances[J]. Geological Review, 65(4): 894−914(in Chinese with English abstract).

    Google Scholar

    [11] Hammarstrom J M, Zen E. 1986. Aluminum in hornblende: An empirical igneous geobarometer[J]. American Mineralogist, 71(11/12): 1297−1313.

    Google Scholar

    [12] Hebei Provincial Bureau of Geology and Mineral Resources. 1994. 1∶50000 Longhua County Regional Geological Survey Report[R].

    Google Scholar

    [13] Hollister L S, Grissom G C, Peters E K, et al. 1987. Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc−alkaline plutons[J]. American Mineralogist, 72(3): 231−239.

    Google Scholar

    [14] Hossain I, Tsunogae T, Rajesh H M. 2009. Geothermobarometry and fluid inclusions of dioritic rocks in Bangladesh: Implications for emplacement depth and exhumation rate[J]. Journal of Asian Earth Sciences, 34(6): 731−739. doi: 10.1016/j.jseaes.2008.10.010

    CrossRef Google Scholar

    [15] Johnson M C, Rutherford M J. 1989. Experimental calibration of the aluminum−in−hornblende geobarometer with application to Long Valley Caldera (California) volcanic rocks[J]. Geology, 17(9): 837−841. doi: 10.1130/0091-7613(1989)017<0837:ECOTAI>2.3.CO;2

    CrossRef Google Scholar

    [16] Li M X, Wang L J, Zhang L M, et al. 2023. Petrogenesis of the Huobulin granite in the southern part of the Xing'an Block and its insight into the evolution of the Mongol−Okhotsk Ocean[J]. Geological Bulletin of China, 42(9): 1541−1555(in Chinese with English abstract).

    Google Scholar

    [17] Liu Y L, Wang Q S, Zhao J H. 1978. A preliminary study based on gravity data of the crustal structure of the Peking−Tientsin area and its neighboring regions[J]. Acta Geophysica Sinica, 21(1): 9−17(in Chinese with English abstract).

    Google Scholar

    [18] Ma X, Chen B, Chen J F, et al. 2012. Zircon SHRIMP U−Pb age, geochemical, Sr−Nd isotopic, and in−situ Hf isotopic data of the Late Carboniferous−Early Permian plutons in the northern margin of the North China Craton[J]. Science China: Earth Sciences, 42(12): 1830−1850(in Chinese with English abstract).

    Google Scholar

    [19] Ma Y S, Zeng Q L, Song B, et al. 2007. SHRIMP U−Pb dating of zircon from Panshan granitoid pluton in Yanshan orogenic belt and its tectonic implications[J]. Acta Petrologica Sinica, 23(3): 547−556(in Chinese with English abstract).

    Google Scholar

    [20] McNulty B A, Tobisch O T, Cruden A R, et al. 2000. Multistage emplacement of the Mount Givens pluton, central Sierra Nevada batholith, California[J]. GSA Bulletin, 112(1): 119−135. doi: 10.1130/0016-7606(2000)112<119:MEOTMG>2.0.CO;2

    CrossRef Google Scholar

    [21] Paterson S R, Vernon R H, Tobisch O T. 1989. A review of criteria for the identifification of magmatic and tectonic foliations in granitoids[J]. Journal of Structural Geology, 11(3): 349−363. doi: 10.1016/0191-8141(89)90074-6

    CrossRef Google Scholar

    [22] Philpotts A R, Asher P M. 1994. Magmatic flow−direction indicators in a giant diabase feeder dike, Connecticut[J]. Geology, 22(4): 363−366. doi: 10.1130/0091-7613(1994)022<0363:MFDIIA>2.3.CO;2

    CrossRef Google Scholar

    [23] Schmidt M W. 1992. Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al−in−hornblende barometer[J]. Contributions to Mineralogy and Petrology, 110: 304−310. doi: 10.1007/BF00310745

    CrossRef Google Scholar

    [24] Stein E, Dietl C. 2001. Hornblende thermobarometry of granitoids from the Central Odenwald (Germany) and their implications for the geotectonic development of the Odenwald[J]. Mineralogy and Petrology, 72(1/3): 185−207.

    Google Scholar

    [25] Tao W, Li Y, Chen Y T, et al. 2021. Syn−tectonic emplacement duringsinistral transpression: The Late Triassic Gaoqiao pluton in the SouthQinling Belt, central China[J]. Geological Journal, 56: 995−1011. doi: 10.1002/gj.3995

    CrossRef Google Scholar

    [26] Vernon R H. 2000. Review of microstructural evidence of magmatic and solid−state flow[J]. Visual Geosciences, 5(2): 1−23. doi: 10.1007/s10069-000-0002-3

    CrossRef Google Scholar

    [27] Wang W L, Liu Y, Zhao L G, et al. 2020. Dataset of chronology, geochemistry and zircon Hf isotopes of Permian magmatites in the Middle Section of the Northern Margin of North China Craton[J]. Geology in China, 47(S1): 32−39(in Chinese with English abstract).

    Google Scholar

    [28] Wang Y, Zhou L Y, Zhao L J, et al. 2010. Paleozoic uplands and unconformity in the North China Block: Constraints from zircon LA−ICP−MS dating and geochemical analysis of Bauxite[J]. Terra Nova, 22: 264−273.

    Google Scholar

    [29] Wang Y, Sun L X, Zhou L Y, et al. 2018. Discussion on the relationship between the Yanshanian Movement and cratonic destruction in North China[J]. Earth Sciences, 61(5): 499−514.

    Google Scholar

    [30] Wyllie P J, Carroll M R, Johnston A D, et al. 1989. Interactions among magmas and rocks in subduction zone regions: Experimental studies from slab to mantle to crust[J]. European Journal of Mineralogy, 1(2): 165−179. doi: 10.1127/ejm/1/2/0165

    CrossRef Google Scholar

    [31] Yang C L, Zou T, Zhu X Y, et al. 2021. Chronology and geochemistry of Mogutu granite in Inner Mongolia and its effect of crustal extension and thinning[J]. Geology in China, 48(1): 247−263(in Chinese with English abstract).

    Google Scholar

    [32] Yoichi U, Norihiro N, Takeyoshi Y. 2006. Magnetite microexsolutions in silicate and magmatic flow fabric of the Goyozan granitoid (NE Japan): Significance of partial remanence anisotropy[J]. Journal of Geophysical Research Solid Earth, 111(B11101): 1−19.

    Google Scholar

    [33] Zeng Y S, Wang Q F, Groves D I, et al. 2023. Prolonged Mesozoic intracontinental gold mineralization in the South China Block controlled by lithosphere architecture and evolving Paleo−Pacific Plate subduction[J]. Earth−Science Reviews, 240: 104387.

    Google Scholar

    [34] Zhang C, Shi S C, Shi Y, et al. 2021. Tectonic evolution of northern margin of Eastern North China Craton: Evidences of Middle Triassic Plutons in Faku Area, Liaoning Province[J]. Journal of Jilin University(Earth Science Edition), 51(3): 734−748(in Chinese with English abstract).

    Google Scholar

    [35] Zhang S H, Zhao Y, Song B. 2006. Hornblende thermobarometry of the Carboniferous granitoids from the Inner Mongolia Paleo−uplift: implications for the tectonic evolution of the northern margin of North China block[J]. Mineralogy and Petrology, 87: 123−141. doi: 10.1007/s00710-005-0116-2

    CrossRef Google Scholar

    [36] Zhang S H, Zhao Y, Song B, et al. 2007. Carboniferous granitic plutons from the northern margin of the North China block: implications for a late Paleozoic active continental margin[J]. Journal of the Geological Society (London), 164: 451−463. doi: 10.1144/0016-76492005-190

    CrossRef Google Scholar

    [37] Zhou L Y, Wang Y. 2012. Late Carboniferous syn−tectonic magmatic flow at the northern margin of the North China Craton−Evidence for the reactivation of cratonic basement[J]. Journal of Asian Earth Sciences, 54/55: 131−142.

    Google Scholar

    [38] 曹花花. 2013. 华北板块北缘东段晚古生代—早中生代火成岩的年代学与地球化学研究[D]. 吉林大学博士学位论文: 100−122.

    Google Scholar

    [39] 付俊彧, 那福超, 李仰春, 等. 2021. 蒙古−鄂霍茨克洋南向俯冲: 小兴安岭西北部落马湖群中三叠世岩浆记录[J]. 地质通报, 40(6): 889−904. doi: 10.12097/j.issn.1671-2552.2021.06.006

    CrossRef Google Scholar

    [40] 龚弥, 蔡剑辉, 阎国翰, 等. 2019. 阴山−燕山北麓富碱侵入岩体的岩石地球化学特征、锆石 SHRIMP U−Pb 年龄及构造意义[J]. 地质论评, 65(4): 894−914.

    Google Scholar

    [41] 河北省地质矿产局. 1994. 1∶50000隆化县幅区域地质调查报告[R].

    Google Scholar

    [42] 李猛兴, 王丽娟, 张利明, 等. 2023. 兴安地块南段霍布林岩体成因及其对蒙古−鄂霍茨克洋演化的启示[J]. 地质通报, 42(9): 1541−1555. doi: 10.12097/j.issn.1671-2552.2023.09.010

    CrossRef Google Scholar

    [43] 刘元龙, 王谦身, 赵建华. 1978. 根据重力资料探讨北京—天津及其邻近地区的地壳构造[J]. 地球物理学报, 21(1): 9−17.

    Google Scholar

    [44] 马旭, 陈斌, 陈家富, 等. 2012. 华北克拉通北缘晚古生代岩体的成因和意义: 岩石学、锆石 U−Pb 年龄、Nd−Sr 同位素及锆石原位 Hf 同位素证据[J]. 中国科学: 地球科学, 42(12): 1830−1850.

    Google Scholar

    [45] 马寅生, 曾庆利, 宋彪, 等. 2007. 燕山中段盘山花岗岩体锆石 SHRIMP U−Pb 年龄测定及其构造意义[J]. 岩石学报, 23(3): 547−556. doi: 10.3969/j.issn.1000-0569.2007.03.002

    CrossRef Google Scholar

    [46] 王文龙, 刘洋, 赵利刚, 等. 2020. 华北板块北缘中段二叠纪岩浆岩年代学、地球化学及锆石 Hf 同位素测试数据集[J]. 中国地质, 47(S1): 32−39.

    Google Scholar

    [47] 杨朝磊, 邹涛, 祝新友, 等. 2021. 内蒙古莫古吐花岗岩年代学、地球化学与地壳伸展−减薄作用[J]. 中国地质, 48(1): 247−263. doi: 10.12029/gc20210117

    CrossRef Google Scholar

    [48] 张超, 石绍山, 石溢, 等. 2021. 华北板块北缘东段中三叠世构造演化——来自辽宁法库地区侵入岩的证据[J]. 吉林大学学报(地球科学版), 51(3): 734−748.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Tables(1)

Article Metrics

Article views(408) PDF downloads(55) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint