2024 Vol. 43, No. 9
Article Contents

ZHAN Zedong, XI Guangyue, REN Bingzhang, HOU Hongxing, LYU Kaining, LI Junhua, SHI Lingfeng, YANG Zhaoyang, CAO Longyu, SHAO Xingkun. 2024. The spatial changes of carbon storage and carbon fixation potential in five counties of Qiqihar, Heilongjiang Province. Geological Bulletin of China, 43(9): 1470-1484. doi: 10.12097/gbc.2023.09.028
Citation: ZHAN Zedong, XI Guangyue, REN Bingzhang, HOU Hongxing, LYU Kaining, LI Junhua, SHI Lingfeng, YANG Zhaoyang, CAO Longyu, SHAO Xingkun. 2024. The spatial changes of carbon storage and carbon fixation potential in five counties of Qiqihar, Heilongjiang Province. Geological Bulletin of China, 43(9): 1470-1484. doi: 10.12097/gbc.2023.09.028

The spatial changes of carbon storage and carbon fixation potential in five counties of Qiqihar, Heilongjiang Province

More Information
  • The five counties and cities of Baiquan, Yi'an, Fuyu, Keshan, and Kedong in Qiqihar, Heilongjiang Province, are famous as the hometown of black soil and also the most important grain producing areas in China. In recent years, there has been relatively little research on the density and storage of organic carbon (Corg) and total carbon (TC) in this region. This article relies on the soil organic carbon and soil total carbon test results obtained from the investigation of the black soil ground substrate in the Qiqihar area of the Songnen Plain to study the Corg and TC reserves, carbon density, spatial distribution, and carbon sequestration potential in the plain areas in the study area of Qiqihar, Heilongjiang Province, with a depth of less than 20 cm, and then use principal component analysis to analyze the factors affecting changes in organic carbon storage. It is found that the TC reserves in five counties of Qiqihar City, Heilongjiang Province is 82.17 Mt, and the Corg reserves is 67.93 Mt, which are at a relatively high level. The results of geostatistical analysis indicate that the Corg reserves in the region have a certain spatial autocorrelation, and the main controlling factor is the water erosion of the Nenjiang River, followed by changes in soil type and land use type. It exhibits a strong carbon sink effect, with a carbon sequestration potential of 20.10 Mt for surface soil Corg, which is at a relatively high level. As a result, it has been found that a stable and good soil environment is conducive to the enrichment and aggregation of carbon. The enrichment of elements such as N, S, Se, and P has extremely high value for carbon sequestration. The increase of inorganic salts such as K2O and Na2O and ecological fragile phenomena such as soil desertification have a significant impact on carbon storage and carbon sink phenomena.

  • 加载中
  • [1] Cao K J, Su H L. 2022. Research on the problems and countermeasures of black soil protection in Qiqihar City[J]. Heilongjiang Grain, (11): 37−39(in Chinese with English abstract).

    Google Scholar

    [2] Cheng K, Pan G X, Tian Y G, et al. 2009. Changes in topsoil organic carbon of China's cropland evidenced from the national soil monitoring network[J]. Journal of Agro−Environment Science, 28(12): 2476−2481 (in Chinese with English abstract).

    Google Scholar

    [3] China Geological Survey. 2014. DZ/T 0258—2014. Specification of multi-purpose regional geochemical survey (1∶250000)[S]. Beijing: China Standards Press (in Chinese).

    Google Scholar

    [4] Dai J R, Hou J H, Yang E X, et al. 2013. Study on soil organic carbon storage and spatiotemporal changes in Shandong Province[C]//Youth Working Committee of the Geological Society of China. Proceedings of the First National Youth Geological Congress(in Chinese with English abstract).

    Google Scholar

    [5] Dawson J J C, Smith P. 2007. Carbon losses from soil and its con−sequences for land−usemanagement[J]. The Science of the Total Environment, 382(2): 165−190.

    Google Scholar

    [6] Fan Y Q, Zhou G M, Shi Y J, et al. 2012. Relationship of slope aspect and position on biomass and carbon storage in a Phyllostachys edulis stand[J]. Journal of Zhejiang A & F University, 29(3): 4−10 (in Chinese with English abstract).

    Google Scholar

    [7] Guo S P. 2011. Analysis on carbon stock and potential carbon sequestration in Heilongjiang Province[J]. Forest Engineering, 27(3): 9−11 (in Chinese with English abstract).

    Google Scholar

    [8] Jiang L Q, Zang S Y, Zhang L J, et al. 2017. Temporal and spatial variations of organic carbon and evaluation of carbon sequestration potential in the agricultural topsoil of the Songnen Plain[J]. Acta Ecologica Sinica, 37(21): 7068−7081 (in Chinese with English abstract).

    Google Scholar

    [9] Jin F, Yang H, Zhao Q G. 2000. Research progress on soil organic carbon storage and influencing factors[J]. Soils, (1): 12−18 (in Chinese with English abstract).

    Google Scholar

    [10] Liu G D, Li Y, Zhang L, et al. 2014. The estimation of soil carbon sequestration potential in southern Songnen plain[J]. Geology in China, 41(2): 658−664 (in Chinese with English abstract).

    Google Scholar

    [11] Liu G Q, Zhang M K. 2020. Effects of land−use patterns and parent material types on accumulation and stability of soil organic carbon in Jinqu Basin[J]. Acta Agriculturae Jiangxi, 32(10): 29−34(in Chinese with English abstract).

    Google Scholar

    [12] Ostle N, Ineson P, Benham D, et al. 2000. Carbon assimilation and turnover in grassland vegetation using an in situ 13CO2 pulse labeling system[J]. Rapid Commun Mass Spectrometry, 14(15): 1345−1350. doi: 10.1002/1097-0231(20000815)14:15<1345::AID-RCM22>3.0.CO;2-B

    CrossRef Google Scholar

    [13] Pan G X, Cao J H, Zhou Y C, et al. 2000. Soil carbon and its significance in carbon cycling of earth surface system[J]. Quaternary Sciences, 20(4): 325−335(in Chinese with English abstract).

    Google Scholar

    [14] Pan G X, Li L Q, Zhang X H, et al. 2003. Soil organic carbon storage of China and the sequestration dynamics in agricultural lands[J]. Advances in Earth Sciences, (4): 609−618(in Chinese with English abstract).

    Google Scholar

    [15] Pan G X, Tao Y X, Teng Y Z, et al. 1998. Influence of pedochemical field on epikarstification in subtropical humid region: Field monitoring and laboratory experiment[J]. Acta Carsologica, 27(11): 175−186.

    Google Scholar

    [16] Pan G X. 1999. Study on Carbon Reservoir in Soils of China[J]. Bulletin of Science and Technology, (5): 330−332(in Chinese with English abstract).

    Google Scholar

    [17] Qin Z L, Yang X M, Song Z L, et al. 2020. Effects of parent materials and land uses on soil organic carbon fractions[J]. Chinese Journal of Soil Science, 51(3): 621−629(in Chinese with English abstract).

    Google Scholar

    [18] Ren C Y, Zhang C H, Wang Z M, et al. 2013. Organic carbon storage and sequestration potential in cropland surface soils of Songnen plain maize belt[J]. Journal of Natural Resources, 28(4): 598−607(in Chinese with English abstract).

    Google Scholar

    [19] Sun Y X, Li J F, Hu W H, et al. 2023. Stoichiometric characteristics of soil carbon, nitrogen, phosphorus, and potassium in chernozem soil under straw returning[J]. Journal of Maize Sciences, (12): 1−14(in Chinese with English abstract).

    Google Scholar

    [20] Swaran H, Berg E V D, Reich P, et al. 1993. Organic carbon in soils of the world[J]. Soil Science Society of America Journal, 57(1): 192−194. doi: 10.2136/sssaj1993.03615995005700010034x

    CrossRef Google Scholar

    [21] Tai J C. 2012. Vartiation of soil organic carbon and the fractions with land use and soil origin of croplands[D]. Ph. D. Dissertation, Nanjing Agricultural University(in Chinese with English abstract).

    Google Scholar

    [22] Wang C Y, Li Y C, Yu C G, et al. 2021. Compositions and variation rule of soil carbon pool in the coastal area of western Liaoning Province[J]. Geology and Resources, 30(2): 173−185(in Chinese with English abstract).

    Google Scholar

    [23] Wang S L, Hu T R, Zhao Y S, et al. 2004. The causes, types, distribution, and control technologies of desertification land in the Nenjiang sandy land of Qiqihar City[J]. Forestry Science & Technology, (5): 15−17(in Chinese with English abstract).

    Google Scholar

    [24] Xi X H, Yang Z F, Liao Q L, et al. 2010. Study on soil carbon storage in typical regions of China[J]. Quaternary Research, 30(3): 573−583(in Chinese with English abstract).

    Google Scholar

    [25] Xi X H, Yang Z F, Xia X Q, et al. 2009. Calculation techniques for soil carbon storage of China based on multi−purpose geochemical survey[J]. Earth Science Frontiers, 16(1): 194−205(in Chinese with English abstract).

    Google Scholar

    [26] Xia B W, Pang L, Chang L, et al. 2023. Effects of different mulching methods on soil nitrogen content and distribution of potato in semi−arid rain−fed areas[J]. Journal of Gansu Agricultural University, 58(1): 55−62(in Chinese with English abstract).

    Google Scholar

    [27] Xing S H, Wu J J, Lin J L. 1989. Studies on the genesis and classification of paddy soils Ⅱ. The eluviation and accumulation of organic matter and its relation to the eluviation and illuviation of iron and manganese in percogenic and periodically waterlogged paddy soils[J]. Journal of Fujian Agriculture and Forestry University, (2): 212−217(in Chinese with English abstract).

    Google Scholar

    [28] Xue L, Xue Y, Lie G W, et al. 2012. Soil organic carbon storage on different slope positions in Cunninghamia Lanceolata stands[J]. Bulletin of Soil and Water Conservation, 32(6): 49−52(in Chinese with English abstract).

    Google Scholar

    [29] Zhang C H, Wang Z M, Ren C Y, et al. 2010. Spatial and temporal patterns of soil organic carbon in maize belt farmland in Songnen Plain[J]. Transactions of the Chinese Society of Agricultural Engineering, 26(S1): 300−307 (in Chinese with English abstract).

    Google Scholar

    [30] Zhang M, Chen G G, Gao C, et al. 2014. Geochemical characteristics of macro elements in soils in the region covered by multi−purpose geochemical survey in eastern China[J]. Journal of Jilin University(Earth Science Edition), 44(3): 995−1002(in Chinese with English abstract).

    Google Scholar

    [31] Zhang X Z, Zhao X L, Li H L, et al. 2011. Research on organic carbon storage and sequestration mechanism of soils in the Hebei Plain[J]. Earth Science Frontiers, 18(6): 41−55(in Chinese with English abstract).

    Google Scholar

    [32] Zheng J B. 2007. Effect of land use types on the fixation of soil organic carbon[D]. Master’s Thesis, Southwest University(in Chinese with English abstract).

    Google Scholar

    [33] 曹克晶, 苏海龙. 2022. 齐齐哈尔市黑土地保护存在问题及对策研究[J]. 黑龙江粮食, (11): 37−39. doi: 10.3969/j.issn.1671-6019.2022.11.014

    CrossRef Google Scholar

    [34] 程琨, 潘根兴, 田有国, 等. 2009. 中国农田表土有机碳含量变化特征——基于国家耕地土壤监测数据[J]. 农业环境科学学报, 28(12): 2476−2481. doi: 10.3321/j.issn:1672-2043.2009.12.006

    CrossRef Google Scholar

    [35] 代杰瑞, 侯建华, 杨恩秀, 等. 2013. 山东省土壤有机碳储量及时空变化研究[C]//中国地质学会青年工作委员会. 第一届全国青年地质大会论文集.

    Google Scholar

    [36] 范叶青, 周国模, 施拥军, 等. 2012. 坡向坡位对毛竹林生物量与碳储量的影响[J]. 浙江农林大学学报, 29(3): 4−10. doi: 10.3969/j.issn.2095-0756.2012.03.001

    CrossRef Google Scholar

    [37] 郭树平. 2011. 黑龙江省碳储量及碳汇潜力分析[J]. 森林工程, 27(3): 9−11. doi: 10.3969/j.issn.1001-005X.2011.03.003

    CrossRef Google Scholar

    [38] 姜蓝齐, 臧淑英, 张丽娟, 等. 2017. 松嫩平原农田土壤有机碳变化及固碳潜力估算[J]. 生态学报, 37(21): 7068−7081.

    Google Scholar

    [39] 金峰, 杨浩, 赵其国. 2000. 土壤有机碳储量及影响因素研究进展[J]. 土壤, (1): 12−18. doi: 10.3321/j.issn:0253-9829.2000.01.003

    CrossRef Google Scholar

    [40] 刘国栋, 李瑛, 张立, 等. 2014. 松嫩平原耕层土壤固碳潜力估算[J]. 中国地质, 41(2): 658−664. doi: 10.3969/j.issn.1000-3657.2014.02.026

    CrossRef Google Scholar

    [41] 刘国群, 章明奎. 2020. 利用方式与成土母质对金衢盆地土壤有机碳积累及其稳定性影响的研究[J]. 江西农业学报, 32(10): 29−34.

    Google Scholar

    [42] 潘根兴. 1999. 中国土壤有机碳和无机碳库量研究[J]. 科技通报, (5): 330−332. doi: 10.3969/j.issn.1001-7119.1999.05.002

    CrossRef Google Scholar

    [43] 潘根兴, 曹建华, 周运超, 等. 2000. 土壤碳及其在地球表层系统碳循环中的意义[J]. 第四纪研究, 20(4): 325−335. doi: 10.3321/j.issn:1001-7410.2000.04.003

    CrossRef Google Scholar

    [44] 潘根兴, 李恋卿, 张旭辉, 等. 2003. 中国土壤有机碳库量与农业土壤碳固定动态的若干问题[J]. 地球科学进展, (4): 609−618. doi: 10.3321/j.issn:1001-8166.2003.04.019

    CrossRef Google Scholar

    [45] 覃智莲, 杨孝民, 宋照亮, 等. 2020. 成土母质和土地利用方式对土壤有机碳化学组成的影响[J]. 土壤通报, 51(3): 621−629.

    Google Scholar

    [46] 任春颖, 张春华, 王宗明, 等. 2013. 松嫩平原玉米带农田表层土壤有机碳储量和固碳潜力研究[J]. 自然资源学报, 28(4): 598−607. doi: 10.11849/zrzyxb.2013.04.006

    CrossRef Google Scholar

    [47] 孙轶萱, 李建峰, 胡文河, 等. 2023. 秸秆还田方式下黑钙土土壤碳氮磷钾化学计量特征研究[J]. 玉米科学, (12): 1−14.

    Google Scholar

    [48] 邰继承. 2012. 不同土地利用和起源农田土壤有机碳及其组分含量变化[D]. 南京农业大学博士学位论文.

    Google Scholar

    [49] 王诚煜, 李玉超, 于成广, 等. 2021. 辽宁西部沿海地区土壤碳库构成及变化规律研究[J]. 地质与资源, 30(2): 173−185.

    Google Scholar

    [50] 王树力, 胡天然, 赵雨森, 等. 2004. 齐齐哈尔市嫩江沙地沙化土地的成因、类型、分布及治理技术[J]. 林业科技, (5): 15−17. doi: 10.3969/j.issn.1001-9499.2004.05.005

    CrossRef Google Scholar

    [51] 奚小环, 杨忠芳, 夏学齐, 等. 2009. 基于多目标区域地球化学调查的中国土壤碳储量计算方法研究[J]. 地学前缘, 16(1): 194−205. doi: 10.3321/j.issn:1005-2321.2009.01.022

    CrossRef Google Scholar

    [52] 奚小环, 杨忠芳, 廖启林, 等. 2010. 中国典型地区土壤碳储量研究[J]. 第四纪研究, 30(3): 573−583. doi: 10.3969/j.issn.1001-7410.2010.03.16

    CrossRef Google Scholar

    [53] 夏博文, 逄蕾, 常磊, 等. 2023. 半干旱雨养区不同覆盖方式对马铃薯土壤氮含量及分布的影响[J]. 甘肃农业大学学报, 58(1): 55−62.

    Google Scholar

    [54] 邢世和, 吴金奖, 林景亮. 1989. 水稻土发生分类的研究Ⅱ两种水型水稻土中有机质淋溶累积的特点及其与铁锰淋淀的关系[J]. 福建农学院学报, (2): 212−217.

    Google Scholar

    [55] 薛立, 薛晔, 列淦文, 等. 2012. 不同坡位杉木林土壤碳储量研究[J]. 水土保持通报, 32(6): 49−52.

    Google Scholar

    [56] 张春华, 王宗明, 任春颖, 等. 2010. 松嫩平原玉米带农田土壤有机碳时空格局[J]. 农业工程学报, 26(S1): 300−307.

    Google Scholar

    [57] 张明, 陈国光, 高超, 等. 2014. 华东多目标区域地球化学调查区土壤常量元素地球化学特征[J]. 吉林大学学报(地球科学版), 44(3): 995−1002.

    Google Scholar

    [58] 张秀芝, 赵相雷, 李宏亮, 等. 2011. 河北平原土壤有机碳储量及固碳机制研究[J]. 地学前缘, 18(6): 41−55.

    Google Scholar

    [59] 郑杰炳. 2007. 土地利用方式对土壤有机碳固定影响研究[D]. 西南大学硕士学位论文.

    Google Scholar

    [60] 中国地质调查局. 2014. DZ/T 0258—2014, 多目标区域地球化学调查规范(1∶250 000)[S]. 北京: 中国标准出版社.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Tables(7)

Article Metrics

Article views(360) PDF downloads(57) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint