2025 Vol. 44, No. 2~3
Article Contents

YANG Chenyu, ZHANG Yu, WANG Xu, JIN Tingting, ZHAO Lianjie, SHEN Hongjie. 2025. Trace element geochemistry of pyrite from the Jinzhuzhou gold deposit in the Dayaoshan district, Qin-Hang Metallogenic Belt (South China): Implications for the metallogenesis. Geological Bulletin of China, 44(2~3): 259-275. doi: 10.12097/gbc.2023.09.023
Citation: YANG Chenyu, ZHANG Yu, WANG Xu, JIN Tingting, ZHAO Lianjie, SHEN Hongjie. 2025. Trace element geochemistry of pyrite from the Jinzhuzhou gold deposit in the Dayaoshan district, Qin-Hang Metallogenic Belt (South China): Implications for the metallogenesis. Geological Bulletin of China, 44(2~3): 259-275. doi: 10.12097/gbc.2023.09.023

Trace element geochemistry of pyrite from the Jinzhuzhou gold deposit in the Dayaoshan district, Qin-Hang Metallogenic Belt (South China): Implications for the metallogenesis

More Information
  • Objective

    As an important part of the Qin−Hang Metallogenic Belt, the Dayaoshan district develops abundant gold deposits. However, due to the lack of effective constraints on the ore−forming process ore source the genesis of these deposits has always been controversial. The aim of this study is to provide constraints on the deposit genesis of regional gold deposits by taking the Jinzhuzhou gold deposit in the Dayaoshan district as the study object.

    Methods

    Pyrite is a common mineral in hydrothermal deposits, and its trace element geochemistry can play an important role in constraints on physicochemical conditions, ore−forming process and origin of deposits. In this paper, the internal structure and in situ trace element studies of Jinzhuzhou pyrite are carried out through field geological investigations, on the basis of fine dissection of the metallogenic process, and with the help of SEM, EPMA, LA−ICP−MS and other testing techniques.

    Results

    The Jinzhuzhou gold deposit is one of the typical gold deposits in this district, and characterized by the NS−trending ore−bearing quartz veins. Its mineralization can be divided into three stages: (Ⅰ) Quartz−sericite−pyrite−arsenopyrite stage; (Ⅱ) Quartz−native gold−polymetallic sulfide stage; (Ⅲ) Quartz−calcite−chlorite stage. Systematic back−scattering imaging observations revealed that the Stage Ⅰ pyrite (Py1) has developed a distinct core−mantle−rim texture, while the porous Stage Ⅱ pyrite (Py2) trapping some sulfide inclusions commonly replaces the mantle zone (Py1b) of Py1. In−situ LA−ICP−MS trace element analysis showed that the core zone (Py1c) of Py1 is enriched in Co, Ni, Se, and Bi. Py1b is commonly enriched in As and Au, while the rim zone of (Py1c) of Py1 is commonly depleted in trace elements. Generally, Py2 is characterized by the depletion of Au−As. Notably, the Co−Ni concentrations declines from Py1a, through Py1b, to Py1c, suggesting a gradual decreasing temperature, which may have been responsible for the core−mantle−rim texture of Py1. Moreover, the sharp and irregular contact boundary between Py2 and Py1b, abundant porosities and mineral inclusion of Py2, and the lower Au−As concentrations of Py2 than Py1b, indicate that Py2 may have been formed via dissolution and precipitation of Py1b. This process results in the remobilization of gold solid solution within Py1b and the further precipitation of visible gold in Stage Ⅱ.

    Conclusions

    Generally, the Jinzhuzhou pyrite is obviously enriched in Se (3.76 ~ 73.3×10−6, with an average of 16.5×10−6). Combining with the widespread development of magmatic−hydrothermal gold deposits, and the possible concealed magmatic pluton in the Dayaoshan district, it is inferred that the Jinzhuzhou gold deposit may have been magmatic hydrothermal origin.

  • 加载中
  • [1] Barker S L L, Hickey K A, Cline J S, et al. 2009. Uncloaking invisible gold: Use of nanoSIMS to evaluate gold, trace elements, and sulfur isotopes in pyrite from Carlin−type gold deposits[J]. Economic Geology and the Bulletin of the Society of Economic Geologists, 104(7): 897−904. doi: 10.2113/econgeo.104.7.897

    CrossRef Google Scholar

    [2] Belousov I, Large R R, Meffre S, et al. 2016. Pyrite compositions from VHMS and orogenic Au deposits in the Yilgarn Craton, Western Australia: Implications for gold and copper exploration[J]. Ore Geology Reviews, 79: 474−499. doi: 10.1016/j.oregeorev.2016.04.020

    CrossRef Google Scholar

    [3] Blanchard M, Alfredsson M, Brodholt J P, et al. 2007. Arsenic incorporation into FeS 2 pyrite and its influence on dissolution: A DFT study[J]. Geochimica et Cosmochimica Acta, 71(3): 624−630. doi: 10.1016/j.gca.2006.09.021

    CrossRef Google Scholar

    [4] Bralia A, Sabatini G, Troja F. 1979. A revaluation of the Co/Ni ratio in pyrite as geochemical tool in ore genesis problems[J]. Mineralium Deposita, 14(3): 353−374.

    Google Scholar

    [5] Butler B I, Rickard D. 2000. Framboidal pyrite formation via the oxidation of iron (II) monosulfide by hydrogen sulphide[J]. Geochimica et Cosmochimica Acta, 64(15): 2665−2672. doi: 10.1016/S0016-7037(00)00387-2

    CrossRef Google Scholar

    [6] Cai M H, Liu G Q. 2000. Petrogenesis and gold mineralization of silicalite from cambrian peidi formation in east Guangxi[J]. South China Geology, (1): 29−33 (in Chinese with English abstract).

    Google Scholar

    [7] Cao G S, Zhang Y, Chen H Y. 2023. Trace elements in pyrite from orogenic gold deposits: Implications for metallogenic mechanism[J]. Acta Petrologica Sinica, 39(8): 2330−2346(in Chinese with English abstract). doi: 10.18654/1000-0569/2023.08.06

    CrossRef Google Scholar

    [8] Chen G Y, Sun D S, Yin H A. 2004. The genetic mineralogy and prospecting mineralogy[M]. Chongqing: Chongqing Publishing & Media Co. , Ltd. (in Chinese).

    Google Scholar

    [9] Chen M H, Li Z Y, Li Q, et al. 2015. A preliminary study of multi−stage granitoids and related metallogenic series in Dayaoshan area of Guangxi, China[J]. Earth Science Frontiers, 22(2): 41−53 (in Chinese with English abstract).

    Google Scholar

    [10] Chen M H, Dang Y, Zhang Z Q, et al. 2019. Multi−stage magmatism and mineralization in Dayaoshan area of Guangxi[M]. Beijing: Geology Press(in Chinese).

    Google Scholar

    [11] Clark C, Grguric B, Mumm A S. 2004. Genetic implications of pyrite chemistry from the Palaeoproterozoic Olary Domain and overlying Neoproterozoic Adelaidean sequences, northeastern South Australia[J]. Ore Geology Reviews, 25(3/4): 237−257.

    Google Scholar

    [12] Cook J N, Ciobanu L C, Meria D, et al. 2013. Arsenopyrite−pyrite association in an orogenic gold ore: Tracing mineralization history from textures and trace elements[J]. Economic Geology and the Bulletin of the Society of Economic Geologists, 108(6): 1273−1283. doi: 10.2113/econgeo.108.6.1273

    CrossRef Google Scholar

    [13] Dang Y, Chen M H, Mao J W, et al. 2020. Weakly fractionated I−type granitoids and their relationship to tungsten mineralization: A case study from the early Paleozoic Shangmushui deposit, Dayaoshan area, South China[J]. Ore Geology Reviews, 117: 103281. doi: 10.1016/j.oregeorev.2019.103281

    CrossRef Google Scholar

    [14] Deditius A P, Utsunomiya S, Renock D, et al. 2008. A proposed new type of arsenian pyrite: Composition, nanostructure and geological significance[J]. Geochimica et Cosmochimica Acta, 72(12): 2919−2933. doi: 10.1016/j.gca.2008.03.014

    CrossRef Google Scholar

    [15] Deditius A P, Utsunomiya S, Reich M, et al. 2011. Trace metal nanoparticles in pyrite[J]. Ore Geology Reviews, 42(1): 32−46. doi: 10.1016/j.oregeorev.2011.03.003

    CrossRef Google Scholar

    [16] Deditius A P, Reich M, Kesler S E, et al. 2014. The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits[J]. Geochimica et Cosmochimica Acta, 140: 644−670. doi: 10.1016/j.gca.2014.05.045

    CrossRef Google Scholar

    [17] Duan R C, Ling W L, Li Q, et al. 2011. Correlations of the Late Yanshanian Tectonomagmatic Events with metallogenesis in South China: Geochemical constraints from the Longtoushan gold ore deposit of the Dayaoshan area, Guangxi Province[J]. Acta Geologica Sinica, 85(10): 1644−1658(in Chinese with English abstract).

    Google Scholar

    [18] Feng Y Z, Zhang Y, Xie Y L, et al. 2020. Pyrite geochemistry metallogenic implications of Gutaishan Au deposit in Jiangnan Orogen, South China[J]. Ore Geology Reviews, 117: 103298. doi: 10.1016/j.oregeorev.2019.103298

    CrossRef Google Scholar

    [19] Fougerouse D, Micklethwaite S, Tomkins G A, et al. 2016. Gold remobilisation and formation of high grade ore shoots driven by dissolution−reprecipitation replacement and Ni substitution into auriferous arsenopyrite[J]. Geochimica et Cosmochimica Acta, 178: 143−159. doi: 10.1016/j.gca.2016.01.040

    CrossRef Google Scholar

    [20] Fougerouse D, Micklethwaite S, Ulrich S, et al. 2017. Evidence for two stages of mineralization in West Africa’s largest gold deposit: Obuasi, Ghana[J]. Economic Geology, 112(1): 3−22. doi: 10.2113/econgeo.112.1.3

    CrossRef Google Scholar

    [21] Geisler T, Schaltegger U, Tomaschek F. 2007. Re−equilibration of zircon in Aqueous fluids and melts[J]. Elements, 3(1): 43−50. doi: 10.2113/gselements.3.1.43

    CrossRef Google Scholar

    [22] Gregory D D, Large R R, Halpin J A, et al. 2015. Trace element content of sedimentary pyrite in black shales[J]. Economic Geology, 110(6): 1389−1410. doi: 10.2113/econgeo.110.6.1389

    CrossRef Google Scholar

    [23] Hastie C E, Kontak J D, Lafrance B. 2020. Gold remobilization: Insights from gold deposits in the Archean Swayze greenstone belt, Abitibi Subprovince, Canada[J]. Economic Geology, 115(2): 241−277. doi: 10.5382/econgeo.4709

    CrossRef Google Scholar

    [24] Hedenquist J W, Lowenstern J B. 1994. The role of magmas in the formation of hydrothermal ore deposits[J]. Nature, 370: 519−527.

    Google Scholar

    [25] Hu H, Lentz D, Li J W, et al. 2015. Reequilibration processes in magnetite from iron skarn deposits[J]. Economic Geology, 110(1): 1−8. doi: 10.2113/econgeo.110.1.1

    CrossRef Google Scholar

    [26] Hu Q F, Li Y, Hua E. 2011. Research on the ore−forming condition and mineralization laws on the gold deposit in Dayaoshan region, eastern Guangxi[J]. Mining Technology, 11(1): 81−83(in Chinese with English abstract).

    Google Scholar

    [27] Huston D L, Sie S H, Suter G F, et al. 1995. Trace elements in sulfide minerals from eastern Australian volcanic−hosted massive sulfide deposits; Part Ⅰ, Proton microprobe analyses of pyrite, chalcopyrite, and sphalerite, and Part Ⅱ, Selenium levels in pyrite; comparison with delta 34 S values and implications for the source of sulfur in volcanogenic hydrothermal systems[J]. Economic Geology, 90(5): 1167−1196. doi: 10.2113/gsecongeo.90.5.1167

    CrossRef Google Scholar

    [28] Keith M, Smith D J, Jenkin G R T, et al. 2018. A review of Te and Se systematics in hydrothermal pyrite from precious metal deposits: Insights into ore−forming processes[J]. Ore Geology Reviews, 96: 269−282. doi: 10.1016/j.oregeorev.2017.07.023

    CrossRef Google Scholar

    [29] Keith M, Smith D J, Doyle K, et al. 2020. Pyrite chemistry: A new window into Au−Te ore−forming processes in alkaline epithermal districts, Cripple Creek, Colorado[J]. Geochimica et Cosmochimica Acta, 274: 172−191. doi: 10.1016/j.gca.2020.01.056

    CrossRef Google Scholar

    [30] Keith M, Haase K M, Chivas A R, et al. 2022. Phase separation and fluid mixing revealed by trace element signatures in pyrite from porphyry systems[J]. Geochimica et Cosmochimica Acta, 329: 185−205. doi: 10.1016/j.gca.2022.05.015

    CrossRef Google Scholar

    [31] Klose L, Keith M, Hafermaas D, et al. 2021. Trace element and isotope systematics in vent fluids and sulphides from Maka Volcano, North Eastern Lau Spreading Centre: Insights into three−component fluid mixing[J]. Frontiers in Earth Science, 9: 776925. doi: 10.3389/feart.2021.776925

    CrossRef Google Scholar

    [32] Koglin N, Frimmel H E, Minter L W E, et al. 2010. Trace−element characteristics of different pyrite types in Mesoarchaean to Palaeoproterozoic placer deposits[J]. Mineralium Deposita, 45(3): 259−280. doi: 10.1007/s00126-009-0272-0

    CrossRef Google Scholar

    [33] Kouzmanov K, Pokrovski G S. 2012. Hydrothermal controls on metal distribution in porphyry Cu (−Mo−Au) systems[M]. Society of Economic Geologists, Special Publication, 16: 573−618.

    Google Scholar

    [34] Lai X, Pang B C, Li Y Q, et al. 2017. Genesis of the Wandao gold deposit in Guangxi, China: Evidences from fluid inclusions and H−O−S−Pb isotopes[J]. Geoscience, 31(5): 1006−1021(in Chinese with English abstract).

    Google Scholar

    [35] Large R R, Danyushevsky L, Hollit C, et al. 2009. Gold and trace element zonation in pyrite using a laser imaging technique: Implications for the timing of gold in orogenic and Carlin−style sediment−hosted deposits[J]. Economic Geology and the Bulletin of the Society of Economic Geologists, 104(5): 635−668. doi: 10.2113/gsecongeo.104.5.635

    CrossRef Google Scholar

    [36] Large R R, Halpin J A, Danyushevsky L, et al. 2014. Trace element content of sedimentary pyrite as a new proxy for deep−time ocean−atmosphere evolution[J]. Earth and Planetary Science Letters, 389: 209−220. doi: 10.1016/j.jpgl.2013.12.020

    CrossRef Google Scholar

    [37] Li X Z, Wang Y J, Li Y X, et al. 2022. Micro−geochemical characteristic of pyrites in the Heilongou gold deposit of Penglai area and its implications for ore−forming fluid, Jiaodong gold province[J]. Geological Bulletin of China, 41(6): 1023−1038 (in Chinese with English abstract).

    Google Scholar

    [38] Li Z Y, Dang Y, Le X W. 2018. Caledonian quartz vein type gold mineralization in the Dayaoshan area, Guangxi: Constraint from the muscovite 39Ar/40Ar dating in the Shangmushui gold deposit[J]. Geological Journal of China Universities, 24(5): 637−644(in Chinese with English abstract).

    Google Scholar

    [39] Liu G Q, Cai M H. 2004. Ore−forming condition and genetic analysis on the gold deposit in Dayaoshan region, eastern Guangxi[J]. Bulletin of Geological Science and Technology, 23(2): 37−44(in Chinese with English abstract).

    Google Scholar

    [40] Liu T F. 1997. Geological features and genesis of Au ore deposits in east Guangxi[J]. Contributions to Geology and Mineral Resources, 12(3): 11−23(in Chinese with English abstract).

    Google Scholar

    [41] Lu H Z. 1990. Inclusions geochemistry[M]. Beijing: Geology Press(in Chinese).

    Google Scholar

    [42] Ma Y, Jiang S Y, Frimmel H E, et al. 2022. In situ chemical and isotopic analyses and element mapping of multiple−generation pyrite: Evidence of episodic gold mobilization and deposition for the Qiucun epithermal gold deposit in Southeast China[J]. American Mineralogist, 107(6): 1133−1148.

    Google Scholar

    [43] Maslennikov V V, Maslennikova S P, Large R R, et al. 2009. Study of trace element zonation in vent chimneys from the Silurian Yaman−Kasy volcanic−hosted massive sulfide deposit (Southern Urals, Russia) using laser ablation−inductively coupled plasma mass spectrometry (LA−ICPMS)[J]. Economic geology and the bulletin of the Society of Economic Geologists, 104(8): 1111−1141. doi: 10.2113/gsecongeo.104.8.1111

    CrossRef Google Scholar

    [44] Migdisov A, Zezin D, Williams−Jones A E. 2011. An experimental study of cobalt (Ⅱ) complexation in Cl and H2S bearing hydrothermal solutions[J]. Geochimica et Cosmochimica Acta, 75(14): 4065−4079. doi: 10.1016/j.gca.2011.05.003

    CrossRef Google Scholar

    [45] Pokrovski G S, Borisova A Y, Bychkov A Y. 2013. Speciation and Transport of Metals and Metalloids in Geological Vapors[J]. Reviews in Mineralogy and Geochemistry, 76(1): 165−218. doi: 10.2138/rmg.2013.76.6

    CrossRef Google Scholar

    [46] Pokrovski G S, Kokh Maria A, Proux O, et al. 2019. The nature and partitioning of invisible gold in the pyrite−fluid system[J]. Ore Geology Reviews, 109: 545−563. doi: 10.1016/j.oregeorev.2019.04.024

    CrossRef Google Scholar

    [47] Putnis A. 2009. Mineral replacement reactions[J]. Reviews in Mineralogy and Geochemistry, 70(1): 87−124. doi: 10.2138/rmg.2009.70.3

    CrossRef Google Scholar

    [48] Qian G, Xia F, Brugger J, et al. 2011. Replacement of pyrrhotite by pyrite and marcasite under hydrothermal conditions up to 220℃: An experimental study of reaction textures and mechanisms[J]. American Mineralogist, 96(11/12): 1878−1893.

    Google Scholar

    [49] Qian L H, Lai J Q, Hu L F, et al. 2019. Geochronology and Geochemistry of the Granites from the Longtoushan Hydrothermal Gold Deposit in the Dayaoshan Area, Guangxi: Implication for Petrogenesis and Mineralization[J]. Journal of Earth Science, 30(2): 309−322. doi: 10.1007/s12583-018-1204-7

    CrossRef Google Scholar

    [50] Qin Y, Zhang Q W, Kang Z Q, et al. 2015. Geochronological framework of granitoids in Dayaoshan metallogenic belt, eastern Guangxi Province[J]. Journal of Jilin University(Earth Science Edition), 45(6): 1735−1756(in Chinese with English abstract).

    Google Scholar

    [51] Reich M, Kesler S E, Utsunomiya S, et al. 2005. Solubility of gold in arsenian pyrite[J]. Geochimica et Cosmochimica Acta, 69(11): 2781−2796. doi: 10.1016/j.gca.2005.01.011

    CrossRef Google Scholar

    [52] Reich M, Deditius A, Chryssoulis S, et al. 2013. Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system: A SIMS/EMPA trace element study[J]. Geochimica et Cosmochimica Acta, 104: 42−62. doi: 10.1016/j.gca.2012.11.006

    CrossRef Google Scholar

    [53] Roedder E. 1972. Barite fluid inclusion geothermometry, Cartersville Mining District, Northwest Georgia; discussion[J]. Economic Geology, 67(6): 821−822. doi: 10.2113/gsecongeo.67.6.821

    CrossRef Google Scholar

    [54] Román N, Reich M, Leisen M, et al. 2019. Geochemical and micro−textural fingerprints of boiling in pyrite[J]. Geochimica et Cosmochimica Acta, 246: 60−85. doi: 10.1016/j.gca.2018.11.034

    CrossRef Google Scholar

    [55] Rottier B, Kouzmanov K, Wälle M, et al. 2016. Sulfide replacement processes revealed by textural and LA−ICP−MS trace element analyses: Example from the early mineralization stages at Cerro de Pasco, Peru[J]. Economic Geology, 111(6): 1347−1367. doi: 10.2113/econgeo.111.6.1347

    CrossRef Google Scholar

    [56] Savage K S, Tingle T N, Peggy A O, et al. 2000. Arsenic speciation in pyrite and secondary weathering phases, Mother Lode Gold District, Tuolumne County, California[J]. Applied Geochemistry, 15(8): 1219−1244. doi: 10.1016/S0883-2927(99)00115-8

    CrossRef Google Scholar

    [57] Sheng Z H. 2005. Gold metallogenic pattern in Dayaoshan ore belt[J]. Contributions to Geology and Mineral Resources Research, B08: 61−63(in Chinese with English abstract).

    Google Scholar

    [58] Simon G, Kesler E S, Chryssoulis S. 1999. Geochemistry and textures of gold−bearing arsenian pyrite, Twin Creeks, Nevada: Implications for deposition of gold in Carlin−type deposits[J]. Economic Geology, 94(3): 405−421. doi: 10.2113/gsecongeo.94.3.405

    CrossRef Google Scholar

    [59] Sun P F, Wang Q F, Li H J, et al. 2020. Geology and pyrite sulfur isotopes of the Suoluogou gold deposit: Implication for crustal continuum model of orogenic gold deposit in northwestern margin of Yangtze Craton, SW China[J]. Ore Geology Reviews, 122: 103487. doi: 10.1016/j.oregeorev.2020.103487

    CrossRef Google Scholar

    [60] Sung Y H, Brugger J, Ciobanu C L, et al. 2009. Invisible gold in arsenian pyrite and arsenopyrite from a multistage Archaean gold deposit: Sunrise Dam, Eastern Goldfields Province, Western Australia[J]. Mineralium Deposita, 44(7): 765−791. doi: 10.1007/s00126-009-0244-4

    CrossRef Google Scholar

    [61] Tan H J, Shao Y J, Liu Q Q, et al. 2022. Textures, trace element geochemistry and in−situ sulfur isotopes of pyrite from the Xiaojiashan gold deposit, Jiangnan Orogen: Implications for ore genesis[J]. Ore Geology Reviews, 144: 104843. doi: 10.1016/j.oregeorev.2022.104843

    CrossRef Google Scholar

    [62] Thomas H V, Large R R, Bull S W, et al. 2011. Pyrite and pyrrhotite textures and composition in sediments, laminated quartz veins, and reefs at Bendigo Gold Mine, Australia: Insights for ore genesis[J]. Economic geology and the bulletin of the Society of Economic Geologists, 106(1): 1−31. doi: 10.2113/econgeo.106.1.1

    CrossRef Google Scholar

    [63] Velásquez G, Béziat D, Salvi S, et al. 2014. Formation and deformation of pyrite and implications for gold mineralization in the El Callao District, Venezuela[J]. Economic Geology, 109(2): 457−486. doi: 10.2113/econgeo.109.2.457

    CrossRef Google Scholar

    [64] Wang G M, Huang C X, Wei Z R, et al. 2017. Spatial and temporal distribution of metal deposits in Dali area, Guangxi, South China[J]. Geology and Mineral Resources of South China, 33(1): 47−64(in Chinese with English abstract).

    Google Scholar

    [65] Wang J C, Hu Y H, Ye L. 2010. Metallotectonical types and indication of the gold deposits in Dayaoshan area in the east of Guangxi[J]. Journal of Guilin University of Technology, 30(4): 467−473(in Chinese with English abstract).

    Google Scholar

    [66] Wang X Y, Liu M C, Zhou G F, et al. 2013. A correlation study of au−polymetallic mineralization and granite−porphyry magmatism in the Xinping mining area of the Dayaoshan metallogenic belt, eastern Guangxi Province[J]. Geoscience, 27(3): 585−592(in Chinese with English abstract).

    Google Scholar

    [67] Wu Y F, Evans K, Li J W, et al. 2019. Metal remobilization and ore−fluid perturbation during episodic replacement of auriferous pyrite from an epizonal orogenic gold deposit[J]. Geochimica et Cosmochimica Acta, 245: 98−117. doi: 10.1016/j.gca.2018.10.031

    CrossRef Google Scholar

    [68] Xiao L Y, Chen M H, Zhang Z Q, et al. 2015. The deposit type, mineralization age and their geological significance of the Wandao gold deposit in Zhaoping County, Guangxi Province[J]. Earth Science Frontiers, 22(2): 118−130 (in Chinese with English abstract).

    Google Scholar

    [69] Zeng C Y. 1996. The relation of the feature of the deep structure to gold mineralization in the upwarping region of Dayao mountain in eastern Guangxi[J]. Journal of Guilin University of Technology, 16(3): 245−251 (in Chinese with English abstract).

    Google Scholar

    [70] Zhang Y, Shao Y J, Chen H Y, et al. 2017. A hydrothermal origin for the large Xinqiao Cu−S−Fe deposit, Eastern China: Evidence from sulfide geochemistry and sulfur isotopes[J]. Ore Geology Reviews, 88: 534−549.

    Google Scholar

    [71] Zhang Y, Tian J, Hollings P, et al. 2020a. Mesozoic porphyry Cu−Au mineralization and associated adakite−like magmatism in the Philippines: Insights from the giant Atlas deposit[J]. Mineralium Deposita, 55(5): 881−900. doi: 10.1007/s00126-019-00907-2

    CrossRef Google Scholar

    [72] Zhang Y, Hollings P, Shao Y J, et al. 2020b. Magnetite texture and trace−element geochemistry fingerprint of pulsed mineralization in the Xinqiao Cu−Fe−Au deposit, Eastern China[J]. American Mineralogist, 105(11): 1712−1723. doi: 10.2138/am-2020-7414

    CrossRef Google Scholar

    [73] Zhang Y, Chen H Y , Cheng J M, et al. 2022. Pyrite geochemistry and its implications on Au−Cu skarn metallogeny: An example from the Jiguanzui deposit, Eastern China[J]. American Mineralogist, 107(10): 1910−1925.

    Google Scholar

    [74] Zhang Z W, Li H, Yu B, et al. 2014. The Mineralization Age of the Gupao Gold Deposit, Guangxi[J]. Applied Mechanics and Materials, 2974(501/504): 327−330.

    Google Scholar

    [75] Zhu G T. 2002. Study on geological character and genesis of Longtoushan gold deposit of Guangxi[J]. Mineral Resources and Geology, 16(5): 266−272 (in Chinese with English abstract).

    Google Scholar

    [76] 蔡明海, 刘国庆. 2000. 桂东寒武系培地组硅质岩成因与金的富集[J]. 华南地质与矿产, (1): 29−33.

    Google Scholar

    [77] 曹根深, 张宇, 陈华勇. 2023. 造山型金矿床黄铁矿微量元素对成矿机制的指示[J]. 岩石学报, 39(8): 2330−2346. doi: 10.18654/1000-0569/2023.08.06

    CrossRef Google Scholar

    [78] 陈光远, 孙岱生, 殷辉安. 2004. 成因矿物学与找矿矿物学[M]. 重庆: 重庆出版社.

    Google Scholar

    [79] 陈懋弘, 李忠阳, 李青, 等. 2015. 初论广西大瑶山地区多期次花岗质岩浆活动与成矿系列[J]. 地学前缘, 22(2): 41−53.

    Google Scholar

    [80] 陈懋弘, 党院, 张志强, 等. 2019. 广西大瑶山地区多期次岩浆活动及成矿作用[M]. 北京: 地质出版社.

    Google Scholar

    [81] 段瑞春, 凌文黎, 李青等. 2011. 华南燕山晚期构造-岩浆事件与成矿作用: 来自广西大瑶山龙头山金矿床的地球化学约束[J]. 地质学报, 85(10): 1644−1658.

    Google Scholar

    [82] 广西壮族自治区第一地质队. 2017. 广西昭平县金竹洲金矿勘查(变更)实施方案[R].

    Google Scholar

    [83] 胡乔帆, 李毅, 华二. 2011. 大瑶山地区金矿成矿条件及成矿规律研究[J]. 采矿技术, 11(1): 81−83. doi: 10.3969/j.issn.1671-2900.2011.01.031

    CrossRef Google Scholar

    [84] 赖昕, 庞保成, 李院强, 等. 2017. 广西昭平湾岛金矿的成因: 流体包裹体和H−O−S−Pb同位素地球化学约束[J]. 现代地质, 31(5): 1006−1021. doi: 10.3969/j.issn.1000-8527.2017.05.011

    CrossRef Google Scholar

    [85] 李秀章, 王勇军, 李衣鑫, 等. 2022. 胶东蓬莱黑岚沟金矿床黄铁矿微区地球化学特征及对成矿流体的启示[J]. 地质通报, 41(6): 1023−1038.

    Google Scholar

    [86] 李忠阳, 党院, 乐兴文. 2018. 广西大瑶山地区加里东期石英脉型金矿: 上木水金矿白云母Ar−Ar年龄约束[J]. 高校地质学报, 24(5): 637−644.

    Google Scholar

    [87] 刘国庆, 蔡明海. 2004. 桂东大瑶山地区金矿成矿条件及成因分析[J]. 地质科技情报, 23(2): 37−44.

    Google Scholar

    [88] 刘腾飞. 1997. 桂东金矿成矿地质特征及矿床成因[J]. 地质找矿论丛, 12(3): 11−23.

    Google Scholar

    [89] 卢焕章. 1990. 包裹体地球化学[M]. 北京: 地质出版社.

    Google Scholar

    [90] 秦亚, 张青伟, 康志强, 等. 2015. 桂东大瑶山成矿带花岗岩类岩石年代学格架的厘定[J]. 吉林大学学报(地球科学版), 45(6): 1735−1756.

    Google Scholar

    [91] 盛志华. 2005. 大瑶山成矿带金矿成矿规律[J]. 地质找矿论丛, B08: 61−63. doi: 10.3969/j.issn.1001-1412.2005.01.012

    CrossRef Google Scholar

    [92] 汪劲草, 胡云沪, 叶琳. 2010. 桂东大瑶山地区金矿床的成矿构造类型及其成矿指示[J]. 桂林理工大学学报, 30(4): 467−473. doi: 10.3969/j.issn.1674-9057.2010.04.001

    CrossRef Google Scholar

    [93] 王功民, 黄赤新, 韦子任, 等. 2017. 广西大黎地区金属矿床时空分布规律[J]. 华南地质与矿产, 33(1): 47−64.

    Google Scholar

    [94] 王新宇, 刘名朝, 周国发, 等. 2013. 桂东大瑶山成矿带新坪矿区花岗斑岩与金多金属成矿作用关系[J]. 现代地质, 27(3): 585−592. doi: 10.3969/j.issn.1000-8527.2013.03.009

    CrossRef Google Scholar

    [95] 肖柳阳, 陈懋弘, 张志强, 等. 2015. 广西昭平湾岛金矿矿床类型、成矿时代及其地质意义[J]. 地学前缘, 22(2): 118−130.

    Google Scholar

    [96] 曾崇义. 1996. 桂东大瑶山隆起区深部构造特征与金矿成矿作用的关系[J]. 桂林工学院学报, 16(3): 245−251.

    Google Scholar

    [97] 朱桂田. 2002. 广西龙头山金矿床地质特征及成因研究[J]. 矿产与地质, 16(5): 266−272. doi: 10.3969/j.issn.1001-5663.2002.05.003

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(3)

Article Metrics

Article views(153) PDF downloads(41) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint