Citation: | WANG Kaixing, LIU Songlin, DAI Jiawen, LIU Xiaodong, YU Chida. 2025. Uranium-molybdenum mineralization age in Nakexiuma area of East Kunlun Orogenic Belt and its implications for regional hydrothermal uranium mineralization. Geological Bulletin of China, 44(4): 623-632. doi: 10.12097/gbc.2023.09.018 |
The East Kunlun Orogenic Belt (EKOB) is one of China's most significant metal ore-forming regions, housing a multitude of metal deposits, including Fe, Au, Cu, Ni, and Mo. Recent uranium exploration results have also demonstrated that the EKOB may be a crucial area for hydrothermal uranium deposits. Further research and analysis are required to comprehensively understand the geological conditions and characteristics of U mineralization in this area. To determine the hydrothermal uranium mineralization events in the EKOB and explore the regional uranium mineralization potential,
U-Mo mineralization at Nakexiuma in the EOKB was selected. Basing on the summarizing the geological features, the ore-forming epoch was explored.
U mineralization at Nakexiuma primarily occurs within the fractures of quartz schists within the Tanjianshan Formation. Primary uranium minerals identified are uraninite and brannerite, indicating a high-temperature hydrothermal U mineralization. Elemental analysis shows that most uraninite analyses from the Nakexiuma area exhibit low concentrations of Ca, Si, and Fe, moderate to low contents of Th, and moderate to high U/Th ratios. The chemical ages (U−Th−Pb) of these analyses range from 229 Ma to 280 Ma, with the smallest U−Th−Pb age likely representing the age of U mineralization at Nakexiuma.
This age aligns with the youngest granitic magmatic age at Nakexiuma, suggesting that hydrothermal fluids may have originated from the Triassic granitic magmatism. Building upon previous research, this study proposes the possibility of an Early Mesozoic hydrothermal U mineralization event in the northwest China. The areas that develop Paleozoic to Mesozoic igneous rocks in the NW China should be a focal point for future uranium exploration.
[1] | Alexandre P, Kyser K, Layton−Matthews D, et al. 2015. Chemical compositions of Natural Uraninite[J]. The Canadian Mineralogist, 53: 595−622. doi: 10.3749/canmin.1500017 |
[2] | Bai Q, Li Y Q, Dai J W, et al. 2019. Mineralization characteristics and ore controlling factors of Hulusen uranium mineralization spot in the East Kunlun of Qinghai[J]. Journal of East China University of Technology (Natural Science), 42(3): 220−226(in Chinese with English abstract). |
[3] | Bi H Z, Song S G, Yang L M, et al. 2019. UHP metamorphism recorded by coesite−bearing metapelite in the East Kunlun Orogen (NW China)[J]. Geological Magazine, 157: 160−172. |
[4] | Bonnetti C, Liu X, Mercadier J, et al. 2021. Genesis of the volcanic−related Be−U−Mo Baiyanghe deposit, West Junggar (NW China), constrained by mineralogical, trace element and U−Pb isotope signatures of the primary U mineralization[J]. Ore Geology Reviews, 128: 103921. doi: 10.1016/j.oregeorev.2020.103921 |
[5] | Bowles J F W. 1990. Age dating of individual grains of uraninite in rocks from Electron Microprobe Analysis[J]. Chemical Geology, 83(1/2): 47−53. |
[6] | Chen J J, Fu L B, Wei J H, et al. 2020. Proto−Tethys magmatic evolution along northern Gondwana: Insights from Late Silurian–Middle Devonian A−type magmatism, East Kunlun Orogen, Northern Tibetan Plateau, China[J]. Lithos, 356: 105304. |
[7] | Cuney M. 2014. Felsic magmatism and uranium deposits[J]. Bulletin de la Societe Geologique de France, 185: 75−92. doi: 10.2113/gssgfbull.185.2.75 |
[8] | Cuney M, Barbey P. 2014. Uranium, rare metals, and granulite−facies metamorphism[J]. Geoscience Frontiers, 5: 729−745. doi: 10.1016/j.gsf.2014.03.011 |
[9] | Dong Y P, He D F, Sun S S, et al. 2018. Subduction and accretionary tectonics of the East Kunlun orogen, western segment of the Central China Orogenic System[J]. Earth−Science Reviews, 186: 231−261. doi: 10.1016/j.earscirev.2017.12.006 |
[10] | Du Y L, Jia J Z, Han S F. 2012. Mesozoic tectono−magmatic−mineralization and copper−gold polymetallic ore prospecting research in East Kunlun metallogenic belt in Qinghai[J]. Northwestern Geology, 45(4): 69−75(in Chinese with English abstract). |
[11] | Feng C Y, Qu W J, Zhang D Q, et al. 2009. Re–Os dating of pyrite from the Tuolugou stratabound Co(Au) deposit, eastern Kunlun Orogenic Belt, northwestern China[J]. Ore Geology Reviews, 36: 213−220. doi: 10.1016/j.oregeorev.2008.10.005 |
[12] | Feng L Q, Gu X X., Zhang Y M, et al. 2021. Genesis of the gold deposits in the Kunlun River area, East Kunlun, Qinghai Province: Constraints from geology, fluid inclusions and isotopes[J]. Ore Geology Reviews, 139: 104564. doi: 10.1016/j.oregeorev.2021.104564 |
[13] | Frimmel H E, Schedel S, Brätz H. 2014. Uraninite chemistry as forensic tool for provenance analysis[J]. Applied Geochemistry, 48: 104−121. doi: 10.1016/j.apgeochem.2014.07.013 |
[14] | Gao Y B, Li K, Qian B, et al. 2018. The metallogenic chronology of Kaerqueka deposit in Eastern Kunlun: Evidences from molybdenite Re−Os and Phlogopite Ar−Ar ages[J]. Geotectonica et Metallogenia, 42(1): 96−107(in Chinese with English abstract). |
[15] | Guo G L, Zhang Z S, Liu X D, et al. 2012. EMPA Chemical U−Th−Pb dating on uraninite in Guangshigou Uranium deposit[J]. Journal of East China University of Technology (Natural Science), 35(4): 309−314(in Chinese with English abstract). |
[16] | Guo X Z, Jia Q Z, Kong H L, et al. 2016. Age, genesis and geological significance of Harizha quartz diorite in the Eastern Part of East Kunlun[J]. Bulletin of Geological Science and Technology, 35(5): 18−26(in Chinese with English abstract). |
[17] | Hao N N, Yuan W M, Zhang A K, et al. 2015. Evolution process of the Late Silurian–Late Devonian tectonic environment in Qimantagh in the western portion of east Kunlun, China: Evidence from the geochronology and geochemistry of granitoids[J]. Journal of Earth System Science, 124: 171−196. doi: 10.1007/s12040-014-0531-z |
[18] | Hu R Z, Luo J C, Chen Y W, et al. 2019. Several progresses in the study of uranium deposits in South China[J]. Acta Petrologica Sinica, 35(9): 2625−2636(in Chinese with English abstract). doi: 10.18654/1000-0569/2019.09.01 |
[19] | Huang H, Wang K X, Cuney M, et al. 2022. Mesozoic magmatic and hydrothermal uranium mineralization in the Huayangchuan carbonatite−hosted U−Nb−polymetallic deposit, North Qinling Orogen (Central China): Evidence from uraninite chemical and isotopic compositions[J]. Ore Geology Reviews, 146: 104958. doi: 10.1016/j.oregeorev.2022.104958 |
[20] | Lei Y L, Dai J W, Bai Q, et al. 2021. Genesis and implications of peraluminous A−type rhyolite in the Haidewula area, East Kunlun Orogen[J]. Acta Petrologica Sinica, 37(7): 1964−1982(in Chinese with English abstract). doi: 10.18654/1000-0569/2021.07.02 |
[21] | Liu J N, Feng C Y, Xiao K Y, et al. 2016. Mineralization characteristics and resource potential analysis of the East Kunlun Metallogenic Belt[J]. Acta Geologica Sinica, 90(7): 1364−1376(in Chinese with English abstract). |
[22] | Lu B L, Niu T, Lian K, et al. 2018. Character of skarn type uranium mineralization and metalization in Nadong, Qimantage area[J]. Uranium Geology, 34(1): 15−19(in Chinese with English abstract). |
[23] | Luo J H, Shi S H, Chen Y W, et al. 2019. Review on dating of uranium mineralization[J]. Acta Petrologica Sinica, 35(2): 589−605(in Chinese with English abstract). |
[24] | Martz P, Mercadier J, Perret J, et al. 2019. Post−crystallization alteration of natural uraninites: Implications for dating, tracing, and nuclear forensics[J]. Geochimica et Cosmochimica Acta, 249: 138−159. doi: 10.1016/j.gca.2019.01.025 |
[25] | Mercadier J, Cuney M, Lach P, et al. 2011. Origin of uranium deposits revealed by their rare earth element signature[J]. Terra Nova, 23: 264−269. doi: 10.1111/j.1365-3121.2011.01008.x |
[26] | Ozha M K, Pal D C, Mishra B, et al. 2017. Geochemistry and chemical dating of uraninite in the Samarkiya area, central Rajasthan, northwestern India−Implication for geochemical and temporal evolution of uranium mineralization[J]. Ore Geology Reviews, 88: 23−42. doi: 10.1016/j.oregeorev.2017.04.010 |
[27] | Song X Y, Yi J N, Chen L M, et al. 2016. The giant Xiarihamu Ni−Co sulfide deposit in the East Kunlun Orogenic Belt, Northern Tibet Plateau, China[J]. Economic Geology, 111: 29−55. doi: 10.2113/econgeo.111.1.29 |
[28] | Wu J H, Guo G L, Guo J L, et al. 2017. Spatial−temporal distribution of Mesozoic igneous rock and their relationship with hydrothermal uranium deposits in eastern China[J]. Acta Petrologica Sinica, 33: 1591−1614(in Chinese with English abstract). |
[29] | Wu J H, Jie K R, Wu R G, et al. 2014. The new progress in the study of Mesozoic rhyolite−trachyte assemblage and hydrothermal−type uranium mineralization in eastern China[J]. Advances in Earth Science, 29(12): 1372−1382(in Chinese with English abstract). |
[30] | Yu M, Feng C Y, Liu H C, et al. 2015. 40Ar−39Ar geochronology of the Galinge large skarn lron deposit in Qinghai Province and geological significance[J]. Acta Geologica Sinica, 89(3): 510−521(in Chinese with English abstract). |
[31] | Zhu K H, Dai J W, Wang K X, et al. 2022. Age and genesis of pitchblende of the Haidewula uranium deposit, East Kunlun Orogen and its geological significance[J]. Earth Science, 47(8): 2940−2950(in Chinese with English abstract). |
[32] | 白强, 李彦强, 戴佳文, 等. 2019. 青海东昆仑胡鲁森铀矿点矿化特征与控矿因素[J]. 东华理工大学学报(自然科学版), 42(3): 220−226. |
[33] | 杜玉良, 贾群子, 韩生福. 2012. 青海东昆仑成矿带中生代构造−岩浆−成矿作用及铜金多金属找矿研究[J]. 西北地质, 45(4): 69−75. doi: 10.3969/j.issn.1009-6248.2012.04.007 |
[34] | 高永宝, 李侃, 钱兵, 等. 2018. 东昆仑卡而却卡铜钼铁多金属矿床成矿年代学: 辉钼矿Re−Os和金云母Ar−Ar同位素定年约束[J]. 大地构造与成矿学, 42(1): 96−107. |
[35] | 郭国林, 张展适, 刘晓东, 等. 2012. 光石沟铀矿床晶质铀矿电子探针化学定年研究[J]. 东华理工大学学报(自然科学版), 35(4): 309−314. |
[36] | 国显正, 贾群子, 孔会磊, 等. 2016. 东昆仑东段哈日扎石英闪长岩时代、成因及其地质意义[J]. 地质科技情报, 35(5): 18−26. |
[37] | 胡瑞忠, 骆金诚, 陈佑纬, 等. 2019. 华南铀矿床研究若干进展[J]. 岩石学报, 35(9): 2625−2636. |
[38] | 雷勇亮, 戴佳文, 白强, 等. 2021. 东昆仑造山带海德乌拉铝质A型流纹岩成因及其意义[J]. 岩石学报, 37(7): 1964−1982. |
[39] | 刘建楠, 丰成友, 肖克炎, 等. 2016. 东昆仑成矿带特征与资源潜力分析[J]. 地质学报, 90(7): 1364−1376. |
[40] | 刘晓东, 巫建华, 聂逢君, 等. 2014. 中国中—新生代铀成矿作用研究[R]. 东华理工大学. |
[41] | 鲁宝龙, 牛霆, 廉康, 等. 2018. 祁漫塔格那东矽卡岩型铀矿化特征及成矿作用[J]. 铀矿地质, 34(1): 15−19. |
[42] | 骆金诚, 石少华, 陈佑纬, 等. 2019. 铀矿床定年研究进展评书[J]. 岩石学报, 35(2): 589−605. |
[43] | 巫建华, 郭国林, 郭佳磊, 等. 2017. 中国东部中生代岩浆岩的时空分布及其与热液型铀矿的关系[J]. 岩石学报, 33: 1591−1614. |
[44] | 巫建华, 解开瑞, 吴仁贵, 等. 2014. 中国东部中生代流纹岩−粗面岩组合与热液型铀矿研究新进展[J]. 地球科学进展, 29(12): 1372−1382. |
[45] | 于淼, 丰成友, 刘洪川, 等. 2015. 青海尕林格矽卡岩型铁矿金云母40Ar/39Ar年代学及成矿地质意义[J]. 地质学报, 89(3): 510−521. |
[46] | 朱坤贺, 戴佳文, 王凯兴, 等. 2022. 东昆仑造山带海德乌拉铀矿床沥青铀矿年代学特征及成因[J]. 地球科学, 47(8): 2940−2950. doi: 10.3321/j.issn.1000-2383.2022.8.dqkx202208020 |
Tectonic sketch map of the east part of East Kunlun Orogenic Belt(a), geological sketch map of the Nakexiuma area(b) and typical cross-section map of the Nakexiuma area(c)
Microtextures of fresh, altered, and mineralized schist in the Nakexiuma area
BSE images of ore minerals in the Nakexiuma area
PbO versus UO2 (a) and PbO versus SiO2+FeO (b) diagrams of uraninite from the Nakexiuma area
Histogram of U−Th−Pb chemical ages of uraninite from the Nakexiuma area