Citation: | ZHANG Honghui, YANG Zhao, LI Zhiwei, CHEN Guiren, YU Yangzhong, YUAN Yongsheng, LI Suoming, ZHANG Yaotang, ZHANG Liyuan, ZHAO Jianbo, WU Liang, PAN Jiangtao. 2024. Discovery of volcanic matter in the Upper Maokou Formation of the Wumengshan area : Evidence of early activity of the Emeishan mantle plume. Geological Bulletin of China, 43(7): 1207-1220. doi: 10.12097/gbc.2023.07.002 |
The Emeishan mantle plume activity is an important geological event in Phanerozoic. To deepen our understanding on the evolution of the Emeishan mantle plume activity in the Wumengshan area of northeastern Yunnan, the isotopic chronology, zircon trace element, zircon Lu−Hf isotopes and dental spines of the middle and upper tuffs of the Maokou Formation in this area were investigated, which is a new direct petrology evidence for the evolution of Emeishan mantle plume activity in the Wumengshan area of northeast Yunnan Province, and the result shows that the zircon U−Pb age of the uppermost tuffs of the Maokou Formation is 268.7 ±1.7 Ma(MSWD=0.89, n=8), consisting with the Jinogondolella aserrata, which is a typical molecule of the Permian Guadalupian Wordian. The zircon trace element characteristics of the uppermost tuffs of the Maokou Formation show affinities of basalt magma origin and continental arc−type tectonic setting, together with a high Th/Nb value, indicating a volcanic activity pre the large−scale eruption of the Emeishan Large Igneous Province. The εHf(t) value of the zircons of the Maokou Formation is −6.7~11.6, indicating that the volcanic activity pre the Emeishan mantle plume was strongly influenced by the mantle plume materials and more crustal materials. The discovery of tuff in Maokou Formation shows that the Emeishan mantle plume has undergone a small−scale magmatic eruption in the Wumengshan area during the in the Permian Guadalupian Wordian. During this period, the mantle plume mainly played the role of conducting heat to the lithosphere and melting some mantle materials, which added new evidence for the establishment of Emeishan mantle plume model.
[1] | Belousova E A, Griffin W L, O'Reilly S Y, et al. 2002. Igneous zircon; trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology, 143(5): 602−622. doi: 10.1007/s00410-002-0364-7 |
[2] | Blichert−Toft J, Albarède F. 1997. The Lu−Hf isotope geochemistry of chondrites and the evolution of the mantle−crust system[J]. Earth and Planetary Science Letters, 148(1): 243−258. |
[3] | Chung S L, Jahn B M. 1995. Plume−lithosphere interaction in generation of the Emeishan flood basalts at the Permian−Triassic boundary[J]. Geology (Boulder), 23(10): 889−892. doi: 10.1130/0091-7613(1995)023<0889:PLIIGO>2.3.CO;2 |
[4] | Courtillot V, Jaupart C, Manighetti I, et al. 1999. On causal links between flood basalts and continental breakup[J]. Earth and planetary science letters, 166(3/4): 177−195. doi: 10.1016/S0012-821X(98)00282-9 |
[5] | Grimes C B, Wooden J L, Cheadle M J, et al. 2015. "Fingerprinting" tectono−magmatic provenance using trace elements in igneous zircon[J]. Contributions to Mineralogy and Petrology, 170(5/6): 1−26. |
[6] | Henderson C M. 2016. Permian conodont biostratigraphy[J]. Geological Society, 450(1): 119−142. |
[7] | Hermann J, Rubatto D, Korsakov A, et al. 2001. Multiple zircon growth during fast exhumation of diamondiferous, deeply subducted continental crust (Kokchetav Massif, Kazakhstan)[J]. Contributions to Mineralogy and Petrology, 141(1): 66−82. doi: 10.1007/s004100000218 |
[8] | Hou Z Q , Chen W, Lu J R. 2002. Collision event during 177~135 Ma on the eastern margin of the Qinghai−Tibet Plateau: Evidence from 40Ar/39Ar dating for basalts on the western margin of the Yangtze Platform[J]. Acta Geologica Sinica, 76(2): 194−204. |
[9] | Huang H, Cawood P A, Hou M C, et al. 2018. Provenance of Late Permian volcanic ash beds in South China: Implications for the age of Emeishan volcanism and its linkage to climate cooling[J]. Lithos, 314/315: 293−306. doi: 10.1016/j.lithos.2018.06.009 |
[10] | Liu H C, Wang Y J, Cawood P A, et al. 2015. Record of Tethyan ocean closure and Indosinian collision along the Ailaoshan suture zone (SW China)[J]. Gondwana Research, 27(3): 1292−1306. doi: 10.1016/j.gr.2013.12.013 |
[11] | Ludwig K R. 2003. Isoplot/Ex, a geochronological toolkit for Microsoft Excel, Version 3.00. Berkeley Geochronology Center[J]. Special Publication, 4: 71−72. |
[12] | Morgan W J. 1971. Convection plumes in the lower mantle[J]. Nature, 230(3): 42−43. |
[13] | Rubatto D. 2002. Zircon trace element geochemistry: Partitioning with garnet and the link between U–Pb ages and metamorphism[J]. Chemical Geology, 184(1): 123−138. |
[14] | Shellnutt J G. 2014. The Emeishan large igneous province: A synthesis[J]. Geoscience Frontiers, 5(3): 369−394. doi: 10.1016/j.gsf.2013.07.003 |
[15] | Slama J, Kosler J, Condon D J, et al. 2008. Plesovice zircon: A new natural reference material for U/Pb and Hf isotopic microanalysis[J]. Chemical Geology, 249(1/2): 1−35. doi: 10.1016/j.chemgeo.2007.11.005 |
[16] | Söderlund U, Patchett P J, Vervoort J D, et al. 2004. The 176Lu decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions[J]. Earth and Planetary Science Letters, 219(3): 311−324. |
[17] | Sun S S, Mcdonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 42(1): 313−345. |
[18] | Sun Y D, Lai X L, Wignall P B, et al. 2010. Dating the onset and nature of the Middle Permian Emeishan large igneous province eruptions in SW China using conodont biostratigraphy and its bearing on mantle plume uplift models[J]. Lithos, 119(1): 20−33. |
[19] | Wang Q, Zhu D C, Zhao Z D, et al. 2012. Magmatic zircons from I−, S− and A−type granitoids in Tibet: Trace element characteristics and their application to detrital zircon provenance study[J]. Journal of Asian Earth Sciences, 53(7): 59−66. |
[20] | Wang X D, Cawood P A, Zhao L S, et al. 2019. Convergent continental margin volcanic source for ash beds at the Permian−Triassic boundary, south China: Constraints from trace elements and Hf−isotopes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 519: 154−165. |
[21] | Wiedenbeck M, Allé P, Corfu F, et al. 1995. Three natural zircon standards for U−Th−Pb, Lu−Hf, trace element and REE analyses[J]. Geostandards Newsletter, 19(1): 1−23. doi: 10.1111/j.1751-908X.1995.tb00147.x |
[22] | Xu Y G, Luo Z Y, Huang X H, et al. 2008. Zircon U–Pb and Hf isotope constraints on crustal melting associated with the Emeishan mantle plume[J]. Geochimica et Cosmochimica Acta, 72(13): 3084−3104. doi: 10.1016/j.gca.2008.04.019 |
[23] | Yan H, Pi D H, Jiang S Y, et al. 2020. New constraints on the onset age of the Emeishan LIP volcanism and implications for the Guadalupian mass extinction[J]. Lithos, 360/361: 105441. doi: 10.1016/j.lithos.2020.105441 |
[24] | Yang J H, Cawood P A, Du Y S, et al. 2012. Large Igneous Province and magmatic arc sourced Permian–Triassic volcanogenic sediments in China[J]. Sedimentary Geology, 261/262(15): 120−131. |
[25] | Zhong Y T, Mundil R, Chen J, et al. 2020. Geochemical, biostratigraphic, and high−resolution geochronological constraints on the waning stage of Emeishan large igneous province[J]. Geological Society of America Bulletin, 132(9/10): 1969−1986. doi: 10.1130/B35464.1 |
[26] | Zheng Y F, Wu Y B, Zhao Z F, et al. 2005. Metamorphic effect on zircon Lu−Hf and U−Pb isotope systems in ultrahigh−pressure eclogite−facies metagranite and metabasite[J]. Earth and Planetary Science Letters, 240(2): 378−400. doi: 10.1016/j.jpgl.2005.09.025 |
[27] | Zhu J, Zhang Z C, Reichow M K, et al. 2018. Weak vertical surface movement caused by the ascent of the Emeishan mantle anomaly[J]. Journal of Geophysical Research: Solid earth, 123(2): 1018−1034. doi: 10.1002/2017JB015058 |
[28] | Zhao Y Z. 1929. Geological notes in_4 Szechuan[J]. Acta Geologica Sinica(English edition), 8(2): 139−154. Zhao Y Z. 1929. Geological notes in_4 Szechuan[J]. Acta Geologica Sinica(English edition), 8(2): 139−154. |
[29] | 何斌, 徐义刚, 肖龙, 等. 2003. 峨眉山大火成岩省的形成机制及空间展布: 来自沉积地层学的新证据[J]. 地质学报, 77(2): 194−202. doi: 10.3321/j.issn:0001-5717.2003.02.007 |
[30] | 何冰辉. 2016. 关于峨眉山大火成岩省一些问题的研究现状[J]. 地球科学进展, 31(1): 23−42. |
[31] | 卢记仁. 1996. 峨眉地幔柱的动力学特征[J]. 地球学报, 17(4): 424−438. |
[32] | 路远发, 李文霞. 2023. 同位素年代学数据处理技术及常见问题解析[J]. 华南地质, 39(1): 157−171. |
[33] | 潘江涛, 刘红豪, 袁永盛, 等. 2022a. 上扬子西缘晚二叠世宣威组凝灰岩: 对峨眉山大火成岩省火山活动及古特提斯弧火山作用的约束[J]. 地质学报, 96(6): 1985−2000. |
[34] | 潘江涛, 吴亮, 张宏辉, 等. 2022b. 云南乌蒙山区1∶50 000瓦岗、黄葛树、大湾子、柿子坝、莲峰、大关县、火烧坝、五寨、闸上9幅区域地质调查报告[R]. 昆明: 中国地质调查局昆明自然资源综合调查中心. |
[35] | 沈树忠, 张华, 张以春, 等. 2019. 中国二叠纪综合地层和时间框架[J]. 中国科学: 地球科学, 49(1): 160−193. |
[36] | 盛金章. 1963. 中国的二叠系[M]. 北京: 科学出版社: 1−95. |
[37] | 王向东. 2019. 晚二叠世—早三叠世火山喷发强度、时限及其与生物绝灭和后期复苏的关系[D]. 中国地质大学(武汉)博士学位论文: 31−48. |
[38] | 王晓峰, 熊波, 戚戎辉, 等. 2021. 滇东北昭通地区峨眉山玄武岩钕−锶−铅同位素特征——峨眉山地幔柱源区性质与Rodinia超大陆事件的耦合关系[J]. 地质通报, 40(7): 1084−1093. |
[39] | 吴鹏, 刘少峰, 窦国兴. 2014. 滇东地区峨眉山地幔柱活动的沉积响应[J]. 岩石学报, 30(6): 1793−1803. |
[40] | 吴鹏. 2015. 峨眉山大火成岩省动力隆升的地层记录及构造—沉积演化[D]. 中国地质大学博士学位论文: 65−72. |
[41] | 吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U−Pb年龄解释的制约[J]. 科学通报, 49(16): 1589−1604. |
[42] | 徐涛, 张忠杰, 刘宝峰, 等. 2015. 峨眉山大火成岩省地壳速度结构与古地幔柱活动遗迹: 来自丽江−清镇宽角地震资料的约束[J]. 中国科学: 地球科学, 45(5): 561−576. |
[43] | 徐义刚, 钟孙霖. 2001. 峨眉山大火成岩省: 地幔柱活动的证据及其熔融条件[J]. 地球化学, 30(1): 1−9. |
[44] | 徐义刚, 何斌, 黄小龙, 等. 2007. 地幔柱大辩论及如何验证地幔柱假说[J]. 地学前缘, 14(2): 1−9. |
[45] | 徐义刚, 钟玉婷, 位荀, 等. 2017. 二叠纪地幔柱与地表系统演变[J]. 矿物岩石地球化学通报, 36(3): 359−373. |
[46] | 袁永盛, 张宏辉, 娄元林, 等. 2022. 滇东北昭通地区发现峨眉山玄武岩沉积夹层: 峨眉山玄武岩幕式喷发新证据[J]. 地质通报, 41(10): 1772−1782. |
[47] | 张宏辉, 袁永盛, 余杨忠, 等. 2021. 扬子板块西缘中生代—新生代碰撞造山事件的记录: 来自峨眉山玄武岩的锆石U−Pb同位素证据[J]. 现代地质, 35(5): 1155−1177. |
[48] | 张宏辉, 吴亮, 李鸿, 等. 2022. 滇东北乌蒙山地区峨眉地幔柱活动与火山−沉积盆地的响应关系[J]. 现代地质, 36(1): 225−243. |
[49] | 张宏辉, 袁永盛, 李致伟, 等. 2023. 扬子地块西缘乌蒙山地区早白垩世橄榄玄武玢岩的发现及其对陆缘碰撞造山事件陆内响应的启示 [J/OL]. 地质通报, 1−20[2023−12−16] http://kns.cnki.net/kcms/detail/11.4648.P.20231213.1136. 002.html. |
[50] | 张云湘, 骆耀南, 杨崇喜. 1988. 攀西裂谷[M]. 北京: 地质出版社: 1−325. |
[51] | 张招崇, 董书云. 2007. 大火成岩省是地幔柱作用引起的吗?[J]. 现代地质, 21(2): 247−254. doi: 10.3969/j.issn.1000-8527.2007.02.009 |
[52] | 张招崇. 2009. 关于峨眉山大火成岩省一些重要问题的讨论[J]. 中国地质, 36(3): 634−646. doi: 10.3969/j.issn.1000-3657.2009.03.010 |
[53] | 赵志丹, 刘栋, 王青, 等. 2018. 锆石微量元素及其揭示的深部过程[J]. 地学前缘, 25(6): 124−135. |
[54] | 周剑雄, 陈振宇. 2007. 电子探针下锆石阴极发光的研究[M]. 成都: 电子科技大学出版社: 1−104. |
The distribution map of the Emeishan Large Igneous Province (ELIP) (a) and simplified geological map of the study area(b)
Zircon CL images of the Maokou Formation tuff in the Zhaishang area, northeastern Yunnan
The diagram of Th/ U ratios (a) and chondrite normalized REE patterns (b) of the zircons from the Maokou Formation tuff in the Zhaishang area, northeastern Yunnan
Discriminant diagrams of protolith and tectonic setting of the zircon in Maokou Formation tuff, Zhaishang area, northeastern Yunnan
Th/ Nb-Hf /Th (a) and Th/U−Nb/Hf (b) diagrams of trace elements in tuff aceous zircons from the Maokou Formation in the Zhaishang area, northeastern Yunnan
Characteristics of Th/Nb and εHf(t) values of zircons from the Maokou Formation tuff in the Zhaishang area, northeastern Yunnan