Citation: | JIANG Tao, CUI Shenghua, XU Xiangning, ZHANG Xiong, XIANG Guoping, AI Ying. 2024. Distribution and evolution of debris flow in a typic meizoseismal area based on remote sensing: A case study of the Sichuan Duwen expressway. Geological Bulletin of China, 43(7): 1243-1254. doi: 10.12097/gbc.2023.06.001 |
Duwen highway in Sichuan province is located in the strong earthquake zone of the 2008 Wenchuan earthquake, where post-earthquake debris flow disasters are exceptionally active. The debris flow disasters causes serious damage to human property and poses a major threat to human security. In order to find out the spatial distribution pattern of the material sources on the mountain slopes and explore the causes of the mudslide material sources in the earthquake area, pre-earthquake DEM, post-earthquake Landsat TM multi-band fusion data, and two-phase full-color band remote sensing data of typical debris flow gullies in the area were selected to analyze the characteristics and evolution of debris flow source development. The results show that the development of debris flow sources is significantly controlled by the combined effects of terrain slope direction, slope gradient, elevation, and water system in the strong earthquake zone of the Wenchuan earthquake. There is a "back slope amplification effect" and "reverse (displacement) direction amplification effect" on the slope direction, and the elevation and slope gradient are related to the dynamic process of mountain slope development. The release of seismic energy is the basis for the development of debris flow sources. An index relationship model between the density of debris flow source development in the strong earthquake zone and seismic intensity was established, and it was believed that the presence of faults in the study area may promote further development of debris flow sources. The evolution of debris sources is characterized by area reduction and disappearance, the disintegration of large sources into multiple small sources, the convergence of small sources leading to an increase in scale, source migration, and the emergence of new sources.
[1] | Cui, P, Chen X Q, Zhu Y, et al. 2011. The Wenchuan Earthquake (May 12, 2008), Sichuan Province, China, and resulting geohazards[J]. Natural Hazards, 56(1): 19−36. doi: 10.1007/s11069-009-9392-1 |
[2] | Delmonaco G, Leoni G, Margottini C, et al. 2003. Large scale debris−flow hazard assessment: a geotechnical approach and GIS modelling[J]. Natural Hazards & Earth System Science, 3(5): 443−455. |
[3] | Di B F, Chen N S, Cui P, et al. 2008. GIS−based risk analysis of debris flow: an application in Sichuan, southwest China[J]. International Journal of Sediment Research, 23(2): 138−148. doi: 10.1016/S1001-6279(08)60013-X |
[4] | Di B, Zeng H, Zhang M, et al. 2010. Quantifying the spatial distribution of soil mass wasting processes after the 2008 earthquake in Wenchuan, China: A case study of the Longmenshan area[J]. Remote Sensing of Environment, 114(4): 761−771. doi: 10.1016/j.rse.2009.11.011 |
[5] | Liu C, Huang H, Dong J. 2008. Impacts of September 21, 1999 Chi−Chi earthquake on the characteristics of gully−type debris flows in central Taiwan[J]. Natural hazards, 47(3): 349−368. doi: 10.1007/s11069-008-9223-9 |
[6] | Spudich P, Hellweg M, Lee W H K. 1996. Directional Topographic Site Response at Tarzana Observed in Aftershocks of the 1994 Northridge, California, Earthquake: Implications for Mainshock Motions[J]. Bulletin of the Seismological Society of America, 86(1): S193−S208. |
[7] | Tang C, Van Asch T W J, Chang M, et al. 2012. Catastrophic debris flows on 13 August 2010 in the Qingping area, southwestern China: The combined effects of a strong earthquake and subsequent rainstorms[J]. Geomorphology, 139(2): 559−576. |
[8] | Tang C, Zhu J, Li W L, et al. 2009. Rainfall−triggered debris flows following the Wenchuan earthquake[J]. Bulletin of Engineering Geology & the Environment, 68(2): 187−194. |
[9] | Tang C. 2010. Activity Tendency Prediction of Rainfall Induced Landslides and Debris Flows in the Wenchuan Earthquake Areas[J]. Journal of Mountain Science, 28(3): 341−349. |
[10] | Wooten, R M, Gillon K A, Witt A C, et al. 2008. Geologic, geomorphic, and meteorological aspects of debris flows triggered by Hurricanes Frances and Ivan during September 2004 in the Southern Appalachian Mountains of Macon County, North Carolina (southeastern USA)[J]. Landslides, 1(5): 31−44. |
[11] | 陈龙, 余斌, 黄海, 等. 2021. 西藏天摩沟泥石流物源演变特征[J]. 地质通报, 40(12): 2089−2097. |
[12] | 丰强, 唐川, 陈明, 等. 2022. 汶川震区绵虒镇“8·20”登溪沟泥石流灾害调查与分析[J]. 防灾减灾工程学报, 42(1): 51−59. |
[13] | 甘建军, 孙海燕, 黄润秋, 等. 2012. 汶川县映秀镇红椿沟特大型泥石流形成机制及堵江机理研究[J]. 灾害学, 27(1): 5−9. |
[14] | Faiz H. 2020. 2008年汶川地震灾区泥石流力学特征调查与过程模拟研究[D]. 中国科学院大学(中国科学院水利部成都山地灾害与环境研究所)硕士学位论文. |
[15] | 郭晓军, 向灵芝, 周小军, 等. 2012. 高家沟泥石流和深溪沟泥石流灾害特征[J]. 灾害学, 27(3): 81−85. |
[16] | 胡卸文, 韩玫, 梁敬轩, 等. 2015. 汶川震区桃关沟2013−07−10泥石流成灾机理[J]. 西南交通大学学报, 50(2): 286−293. |
[17] | 胡旭东, 沈已桐, 胡凯衡, 等. 2022. 震区泥石流物源与冲出量的关系——以四川汶川县簇头沟为例[J]. 山地学报, 40(3): 369−383. |
[18] | 槐永波, 叶胜华, 赵其苏. 2021. 汶川地震10年来北川县地质灾害发育规律分析[J]. 人民长江, 52(S2): 83−87. |
[19] | 黄润秋, 李为乐. 2008. “5.12”汶川大地震触发地质灾害的发育分布规律研究[J]. 岩石力学与工程学报, 27(12): 2585−2592. |
[20] | 黄润秋, 李为乐. 2015. 汶川大地震触发地质灾害的断层效应分析[J]. 工程地质学报, 17(8): 19−28. |
[21] | 黄润秋. 2008. 岩石高边坡发育的动力过程及其稳定性控制[J]. 岩石力学与工程学报, (8): 1525−1544. |
[22] | 李明威, 唐川, 陈明, 等. 2021. 四川省汶川县板子沟8·20泥石流成因与易损强度分析[J]. 防灾减灾工程学报, 41(2): 238−245. |
[23] | 罗玉婷, 唐川, 熊江, 等. 2020. 四川省汶川县下庄沟“8·20”泥石流成因分析及堵江范围预测[J]. 水土保持通报, 40(6): 193−199. |
[24] | 吕小波, 游勇, 柳金峰, 等. 2021. 汶川2019年“8·20”群发性泥石流降雨特征与临界雨量分析[J]. 兰州大学学报(自然科学版), 57(6): 775−782. |
[25] | 苗晓岐. 2021. 多源遥感技术在藏东南艰险复杂山区泥石流物源识别中的应用[J]. 地质通报, 40(12): 2052−2060. |
[26] | 牛安福, 赵静, 苑争一, 等. 2022. 汶川地震孕育过程中变形场变化特征研究[J]. 武汉大学学报(信息科学版), 47(6): 839−848. |
[27] | 庆丰, 孟兴民, 郭富赟, 等. 2021. 汶川地震扰动区文县“8·7”泥石流灾害特征分析——以洋汤沟为例[J]. 兰州大学学报(自然科学版), 57(3): 376−381. |
[28] | 唐川, 丁军, 梁京涛. 2010. 汶川震区北川县城泥石流源地特征的遥感动态分析[J]. 工程地质学报, 18(1): 1−7. |
[29] | 王东伟, 游勇, 李道凌, 等. 2022. 汶川县绵虒镇板子沟“8·20”大型泥石流堵河特征及危害性预测[J]. 中国地质灾害与防治学报, 33(1): 58−66. |
[30] | 王猛, 王军, 汪友明, 等. 2014. 汶川地震区牛圈沟泥石流遥感动态变化特征分析[C]// 中国遥感应用协会环境遥感分会. 第十八届中国环境遥感应用技术论坛论文集: 11. |
[31] | 谢洪, 钟敦伦, 矫震, 等. 2009. 2008年汶川地震重灾区的泥石流[J]. 山地学报, 27(4): 501−509. |
[32] | 许强, 裴向军, 黄润秋. 2009. 汶川地震大型滑坡研究[M]. 北京: 科学出版社. |
[33] | 许强. 2010. 四川省8·13特大泥石流灾害特点、成因与启示[J]. 工程地质学报, 18(5): 596−608. |
[34] | 杨迎冬, 晏祥省, 张红兵. 2010. 云南省东川区泥石流灾害SPOT5遥感影像特征[J]. 灾害学, 25(4): 59−62. |
[35] | 游勇, 陈兴长, 柳金峰. 2011. 四川绵竹清平乡文家沟“8·13”特大泥石流灾害[J]. 灾害学, 26(4): 68−72. |
[36] | 余斌, 马煜, 吴雨夫. 2010. 汶川地震后四川省绵竹市清平乡文家沟泥石流灾害调查研究[J]. 工程地质学报, 18(6): 827−836. |
[37] | 袁东, 张广泽, 王栋, 等. 2023. 西部山区交通廊道泥石流发育特征及选线对策[J]. 地质通报, 42(5): 743−752. |
[38] | 张建石. 2020. 汶川县肖家沟泥石流物源演变及冲出规模研究[J]. 人民长江, 51(8): 37−43. |
[39] | 赵俊华. 2004. 舟曲县滑坡泥石流遥感影像判读与灾害防治[J]. 人民长江, 35(12): 1−2, 4, 54. |
Geographical location of the study area
Water system in the study area
Source isodensity diagram
Distance between material source and seismic fracture
Interpretation of aspect and source based on remote sensing
Direction effect of source development
Directional effect of source formation
Interpretation of slope and source remote sensing
Interpretation of elevation and source based on remote sensing
Slope and source
Elevation and source
Mechanism of elevation and slope control of material source
Microgeomorphological effects of phytogenic development
Vegetation and sources
Water system and source
Sources of Hongchun Ditch, Niuquan Ditch and Mayang Station Ditch in 2010 and 2013
Characteristics of sources evolution