2024 Vol. 43, No. 1
Article Contents

WANG Jinfang, SONG Yutong, LI Kangshuo, LU Zeqian, LIU Chenyu, LI Yingjie, CHEN Gongzheng. 2024. Discovery of the Paleoproterozoic complex at Dongwayao in northern Hebei and its constraint on the extensional event of the North China Craton. Geological Bulletin of China, 43(1): 46-60. doi: 10.12097/gbc.2023.04.042
Citation: WANG Jinfang, SONG Yutong, LI Kangshuo, LU Zeqian, LIU Chenyu, LI Yingjie, CHEN Gongzheng. 2024. Discovery of the Paleoproterozoic complex at Dongwayao in northern Hebei and its constraint on the extensional event of the North China Craton. Geological Bulletin of China, 43(1): 46-60. doi: 10.12097/gbc.2023.04.042

Discovery of the Paleoproterozoic complex at Dongwayao in northern Hebei and its constraint on the extensional event of the North China Craton

  • The formation time of the North China Craton (NCC) is still unclear, and the basement uplift region in northern Hebei is an ideal area for studying the formation and evolution of the NCC. A Paleoproterozoic post−orogenic A−type granite complex newly discovered at Dongwayao has important implications for understanding the formation time of the NCC. This paper present results of petrology, geochemistry, LA−ICP−MS zircon U−Pb geochronology and Hf isotopic composition of the Dongwayao complex to discusse the formation age, petrogenesis and tectonic setting.The LA−ICP−MS zircon U−Pb dating shows that the ages of the syenogranite and quartz syenite are 1920±11 Ma and 1902±12 Ma, respectively, indicating that the complex was emplaced in the Late Paleoproterozoic, not the Early Cretaceous as originally suggested. Petrogeochemical studies show that the syenogranite has high SiO2(72.07%~75.03%), Na2O+K2O (8.54%~8.99%) and K2O(5.78%~6.64%) contents, and poor in CaO, Al2O3, MgO, P2O5, TiO2, Ba, Sr, Eu, P and Ti contents. The quartz syenite belongs to alkaline series and is relatively rich SiO2(66.09%~66.65%), Na2O+K2O (12.22%~12.35%) and K2O(10.00%~10.18%) contents, and poor in TiO2, MgO, CaO, Sr, Eu and Ti contents. The syenogranite and quartz syenite have high TFeO/MgO, K2O/MgO, (Na2O+K2O)/CaO ratios and high zircon saturation temperatures (average 842°C), indicating the geochemical features of A-type granite. According to the chemical subdivision diagrams of the A−type granitoids, the complex shows the characteristics of A2−type granitoid, formed in post−orogenic extensional tectonic setting. The εHf (t) values of the syenogranite and quartz syenite range from -2.56 to+2.42 and-3.27 to+4.17, respectively, with model ages of 2262~2419 Ma and 2175~2466 Ma. The A−type granites were derived predominantly from partial melting of the ancient crustal materials with involvement of a small amount of mantle materials. The Dongwayao A−type granite complex newly discovered indicates that there is a late Paleoproterozoic post−orogenic extensional tectonic−magmatic event in the northern margin of the NCC, which marks the end of ~1.92 Ga orogenic movement in the NCC and the beginning of the postorogenic evolution.The timing for the collision and assembly of the NCC may be around 1.92 Ga.

  • 加载中
  • [1] Bonin B. 2007. A−type granites and related rocks: Evolution of a concept, problems and prospects[J]. Lithos, 97: 1−29. doi: 10.1016/j.lithos.2006.12.007

    CrossRef Google Scholar

    [2] Boynton W V. 1984. Geochemistry of the rare earth elements: meteorite studies/Henderson P. Rare earth element geochemistry[M]. Elsevier: 63−114.

    Google Scholar

    [3] Collins W J, Beams S D, White A J R, et al. 1982. Nature and origin of A−type granites with particular reference to southeastern Australia[J]. Contributions to Mineralogy & Petrology, 80(2): 189−200.

    Google Scholar

    [4] Delaroche H, Leteeeier J, Grande Claude P. 1980. A classification of volcanic and plutonic rocks using R1−R2 diagrams and major element analyses−Its relationships and current nomenclature[J]. Chem. Geol., 29: 183−210. doi: 10.1016/0009-2541(80)90020-0

    CrossRef Google Scholar

    [5] Eby G N. 1992. Chemical subdivision of the A−type granitoids: Petrogenetic and tectonic implications[J]. Geology, 20: 641−644.

    Google Scholar

    [6] Griffin W L, Wang X, Jackson S E, et al. 2002. Zircon chemistry and magma mixing, SE China: In−situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J]. Lithos, 61(3/4): 237−269.

    Google Scholar

    [7] King P L, Chappell B W, Allen C M, et al. 2001. Are A−type granites the high-temperature felsic granites? Evidence from fractionated granites of the Wangrah suite[J]. Australian Journal of Earth Sciences, 48(4): 501−514. doi: 10.1046/j.1440-0952.2001.00881.x

    CrossRef Google Scholar

    [8] Kröner A. 2005. Age and evolution of a late Archean to Palaeoproterozoic upper to lower crustal section in the Wutaishan/Hengshan/Fuping terrain of northern China[J]. J. Asian Earth Sci., 24: 577−595. doi: 10.1016/j.jseaes.2004.01.001

    CrossRef Google Scholar

    [9] Kusky T, Li J H, Santosh M. 2007. The Paleoproterozoic North Hebei orogen: North China Craton's collisional suture with the Columbia supercontinent[J]. Condwana Research, 12(1/2): 4−28.

    Google Scholar

    [10] Kusky T M. 2011. Geophysical and geological tests of tectonic models of the North China Craton[J]. Condwana Research, 20(1): 26−35. doi: 10.1016/j.gr.2011.01.004

    CrossRef Google Scholar

    [11] Liu S W, Fu J H, Lu Y J, et al. 2019. Precambrian Hongqiyingzi Complex at the northern margin of the North China Craton: Its zircon U−Pb−Hf systematics, geochemistry and constraints on crustal evolution[J]. Precambrian Research, 326: 58−83. doi: 10.1016/j.precamres.2018.05.019

    CrossRef Google Scholar

    [12] Middlemost E A K. 1994. Naming materials in the magma/igneous rock system[J]. Earth Science Reviews, 37(3/4): 215−224.

    Google Scholar

    [13] Pankhurst M J, Schaefer B F, Turner S P, et al. 2013. The source of A−type magmas in two contrasting settings: U−Pb, Lu−Hf and Re−Os isotopic constraints[J]. Chemical Geology, 351: 175−194. doi: 10.1016/j.chemgeo.2013.05.010

    CrossRef Google Scholar

    [14] Pearce J A, Lippard S J, Roberts S. 1984. Characteristics and tectonic significance of supra−subduction zone ophiolites[C]// Kokelaar B P, Howells M F. Marginal basin geology. Geological Society of London Special Publication, 16: 77−94.

    Google Scholar

    [15] Peccerillo A, Taylor S R. 1976. Geochemistry of Eocene calc−alkaline volcanic rocks from the Kastamonu area, NorthernTurkey[J]. Contributions to Mineralogy and Petrology, 58: 63−81. doi: 10.1007/BF00384745

    CrossRef Google Scholar

    [16] Rapp R P, Watson E B. 1995. Dehydration melting of metabasalt at 8−32kbar: Implications for continental growth and crust−mantle recycling[J]. Journal of Petrology, 36: 891−931. doi: 10.1093/petrology/36.4.891

    CrossRef Google Scholar

    [17] Sun S S, McDonough W F. 1989. Chemical and isotope systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society of London, Special Publication, 42: 313−345. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    [18] Whalen J B, Currie K, Chappel B W. 1987. A−type granite: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 95: 407−419. doi: 10.1007/BF00402202

    CrossRef Google Scholar

    [19] Zhao G C, Sun M, Wilde S A, et al. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited[J]. Precambrian Research, 136(2): 177−202. doi: 10.1016/j.precamres.2004.10.002

    CrossRef Google Scholar

    [20] 邓小芹, 彭头平, 赵太平, 等. 2019. 华北克拉通南缘古元古代末(~1.84 Ga)垣头A−型花岗岩成因及其构造意义[J]. 岩石学报, 35(8): 2455−2469.

    Google Scholar

    [21] 董春艳, 王世进, 刘敦一, 等. 2011. 华北克拉通古元古代晚期地壳演化和荆山群形成时代制约——胶东地区变质中—基性侵入岩锆石SHRIMP U−Pb定年[J]. 岩石学报, 27(6): 1699−1706.

    Google Scholar

    [22] 高山林, 张仲培, 刘士林, 等. 2018. 塔里木克拉通北部沙雅隆起古元古代A型花岗岩的发现及其构造意义[J]. 岩石学报, 34(7): 2017−2029.

    Google Scholar

    [23] 河北省区域地质矿产调查研究所. 2004. K50C003001(张北县幅)1: 250000区域地质调查[R].

    Google Scholar

    [24] 康健丽, 王惠初, 肖志斌, 等. 2021. 云中山地区古元古代霞石正长岩的发现及其对中部带造山作用的限定[J]. 地质通报, 40(12): 2183−2185.

    Google Scholar

    [25] 李江海, 钱祥麟, 黄雄南. 2000. 华北陆块基底构造格局及早期大陆克拉通化过程[J]. 岩石学报, 16: 1−10.

    Google Scholar

    [26] 李江海, 牛向龙, 程素华, 等. 2006. 大陆克拉通早期构造演化历史探讨: 以华北为例[J]. 地球科学, (3): 285−293.

    Google Scholar

    [27] 李三忠, 赵国春, 孙敏. 2016. 华北克拉通早元古代拼合与Columbia超大陆形成研究进展[J]. 科学通报, 61(9): 919−925.

    Google Scholar

    [28] 李献华, 李武显, 李正祥. 2007. 再论南岭燕山早期花岗岩的成因类型与构造意义[J]. 科学通报, 52(9): 981−991.

    Google Scholar

    [29] 刘超辉, 刘福来, 赵国春. 2012. 华北克拉通中部造山带早元古代盆地演化[J]. 岩石学报, 28(9): 2770−2784.

    Google Scholar

    [30] 刘建峰, 李锦轶, 曲军峰, 等. 2016. 华北克拉通北缘隆化地区蓝旗镇古元古代石榴石花岗岩的成因及地质意义[J]. 地质学报, 90(9): 2365−2383.

    Google Scholar

    [31] 刘树文, 吕勇军, 凤永刚, 等. 2007. 冀北红旗营子杂岩的锆石、独居石年代学及地质意义[J]. 地质通报, 26(9): 1086−1100.

    Google Scholar

    [32] 师江朋, 杨德彬, 霍腾飞, 等. 2017. 华北克拉通南缘A型花岗岩的年代学和Nd−Hf同位素组成: 对古元古代晚期伸展事件的制约[J]. 岩石学报, 33(10): 3042−3056.

    Google Scholar

    [33] 王芳, 彭澎, 陈超, 等. 2021. 冀北独石口古元古代变辉长闪长岩的成因及其地质意义[J]. 岩石学报, 37(1): 269−283.

    Google Scholar

    [34] 王惠初, 陆松年, 赵风清, 等. 2005. 华北克拉通古元古代地质记录及其构造意义[J]. 地质调查与研究, 28(3): 129−143.

    Google Scholar

    [35] 王惠初, 初 航, 相振群, 等. 2012. 华北克拉通北缘崇礼—赤城地区的红旗营子(岩)群: 一套晚古生代的变质杂岩[J]. 地学前缘, 19(5): 100−113.

    Google Scholar

    [36] 王金芳, 李英杰, 李红阳, 等. 2018. 内蒙古西乌旗石匠山晚侏罗世—早白垩世A型花岗岩锆石U−Pb年龄及构造环境[J]. 地质通报, 37(2/3): 382−396.

    Google Scholar

    [37] 王金芳, 李英杰, 李红阳, 等. 2020a. 内蒙古阿尔塔拉中三叠世A型花岗岩锆石U−Pb年龄、地球化学特征及构造意义[J]. 地质通报, 39(1): 51−61.

    Google Scholar

    [38] 王金芳, 李英杰, 李红阳, 等. 2020b. 古亚洲洋俯冲板片断离与后造山伸展: 贺根山缝合带火山岩年代学和地球化学证据[J]. 地质学报, 94(12): 3561−3580.

    Google Scholar

    [39] 王金芳, 李英杰, 李红阳, 等. 2021. 贺根山缝合带阿萨格图钾玄质火山岩锆石LA−ICP−MS U−Pb年龄、地球化学特征及构造意义[J]. 地质论评, 67(4): 918−935.

    Google Scholar

    [40] 王洛娟, 郭敬辉, 彭澎. 2021. 华北克拉通孔兹岩带古元古代凉城石榴石花岗岩成因机制及其岩石学意义[J]. 岩石学报, 37(2): 375−390.

    Google Scholar

    [41] 王智, 王惠初, 施建荣, 等. 2020. 内蒙古集宁地区徐武家变质辉长岩的形成背景及其地质意义[J]. 地质调查与研究, 43(2): 97−113.

    Google Scholar

    [42] 魏春景. 2018. 华北中部造山带五台—恒山地区古元古代变质作用与构造演化[J]. 地球科学, 43(1): 24−43.

    Google Scholar

    [43] 吴福元, 李献华, 郑永飞, 等. 2007. Lu−Hf同位素体系及其岩石学应用[J]. 岩石学报, 23(2): 185−220. doi: 10.3969/j.issn.1000-0569.2007.02.001

    CrossRef Google Scholar

    [44] 杨进辉, 吴福元, 谢烈文, 等. 2007. 辽东矿洞沟正长岩成因及其构造意义: 锆石原位微区U−Pb年龄和Hf同位素制约[J]. 岩石学报, 23(2): 263−276.

    Google Scholar

    [45] 尤佳, 罗金海, 程佳孝, 等. 2014. 华北地块西南缘古元古代花岗斑岩及其构造意义[J]. 高校地质学报, 20(3): 368−377.

    Google Scholar

    [46] 翟明国, 卞爱国. 2000. 华北克拉通新太古代末超大陆拼合及古元古代末—中元古代裂解[J]. 中国科学(D辑), 30(增1): 129−137.

    Google Scholar

    [47] 翟明国. 2004. 华北克拉通21~17亿年地质事件群的分解和构造意义探讨[J]. 岩石学报, 20(6): 1343−1354.

    Google Scholar

    [48] 翟明国, 彭澎. 2007. 华北克拉通古元古代构造事件[J]. 岩石学报, 23: 2665−2687.

    Google Scholar

    [49] 翟明国. 2011. 克拉通化与华北陆块的形成[J]. 中国科学(地球科学), 41(8): 1037−1046.

    Google Scholar

    [50] 张华锋, 翟明国, 彭澎. 2006. 华北克拉通桑干地区古元古代高压麻粒岩锆石SHR1MP U−Pb年龄及其地质含义[J]. 地学前缘, 13(3): 190−199.

    Google Scholar

    [51] 张华锋, 罗志波, 周志广, 等. 2009. 华北克拉通中北部古元古代碰撞造山时限: 来自强过铝花岗岩和韧性剪切时代的制约[J]. 矿物岩石, 29(1): 60−67.

    Google Scholar

    [52] 张家辉, 王惠初, 郭敬辉, 等. 2020. 天镇—怀安地区变质基性岩墙群: 华北克拉通古元古代末期碰撞−伸展构造体制转换标志[J]. 地球科学, 45(9): 3239−3257.

    Google Scholar

    [53] 张旗, 冉皞, 李承东. 2012. A型花岗岩的实质是什么[J]. 岩石矿物学杂志, 31(4): 621−626.

    Google Scholar

    [54] 张永旺, 刘汇川, 于志琪, 等. 2021. 塔里木克拉通古元古代晚期A型花岗岩成因及对哥伦比亚超大陆演化的指示意义[J]. 岩石学报, 37(4): 1122−1138.

    Google Scholar

    [55] 张玉清, 张婷, 陈海东. 2016. 内蒙古凉城蛮汗山石榴石二长花岗岩LA−MC−ICP−MS锆石U−Pb年龄及成因讨论[J]. 中国地质, 43(3): 768−779.

    Google Scholar

    [56] 赵国春, 孙敏, Wilde S A. 2002.华北克拉通基底构造单元特征及早元古代拼合[J]. 中国科学(D辑), 32(7): 538−549.

    Google Scholar

    [57] 赵国春. 2009. 华北克拉通基底主要构造单元变质作用演化及其若干问题讨论[J]. 岩石学报, 25(8): 1772−1792.

    Google Scholar

    [58] 钟长汀, 邓晋福, 万渝生, 等. 2007. 华北克拉通北缘中段古元古代造山作用的岩浆记录: S型花岗岩地球化学特征及锆石SHRIMP年龄[J]. 地球化学, 36(6): 633−637.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(3)

Article Metrics

Article views(959) PDF downloads(55) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint