2025 Vol. 44, No. 2~3
Article Contents

WU Jun, WEI Hantao, DONG Guojun, FAN Peng, WU Shenggang, CHEN Xiaogang, MENG Yaqun, YIN Fangyuan. 2025. Formation mechanism of the Huangjindong gold deposit, Northeastern Hunan ore cluster: Constraints from trace elements compositions of arsenopyrite and pyrite. Geological Bulletin of China, 44(2~3): 298-314. doi: 10.12097/gbc.2023.04.040
Citation: WU Jun, WEI Hantao, DONG Guojun, FAN Peng, WU Shenggang, CHEN Xiaogang, MENG Yaqun, YIN Fangyuan. 2025. Formation mechanism of the Huangjindong gold deposit, Northeastern Hunan ore cluster: Constraints from trace elements compositions of arsenopyrite and pyrite. Geological Bulletin of China, 44(2~3): 298-314. doi: 10.12097/gbc.2023.04.040

Formation mechanism of the Huangjindong gold deposit, Northeastern Hunan ore cluster: Constraints from trace elements compositions of arsenopyrite and pyrite

More Information
  • Objective

    The large−scale Huangjindong gold deposit is one representative gold deposit in the Northeastern Hunan ore cluster, Jiangnan terrain, and it has gold resources about 80 tons, and the average grade is about 5 g/t. The orebodies mainly occur in the slates of the Neoproterozoic Lengjiaxi Group.

    Methods

    In order to reveal the processes of large−scale gold enrichment, the trace element composition of gold−bearing sulfides and the occurrence mechanisms of invisible gold in the Huangjindong gold deposit are researched in this study. Detailed field geological investigation, texture revealed by electron probe microstructure and trace elements determined by laser denudation plasma mass spectrometer (LA−ICP−MS) were carried out in this work. The results show that pyrite and arsenopyrite have homogeneous texture, and the zone texture is lacking. LA−ICP−MS trace element analyses result show that the invisible Au content in pyrite ranges from 3.1×10−6 to 111.5×10−6, with an average of 31.9×10−6. The invisible Au content in arsenopyrite ranges from 0.6×10−6 to 279.4×10−6, with an average of 67.2×10−6. The invisible gold content in pyrite lies below the saturation line, suggesting that the invisible gold is mainly lattice gold. There are a few gold nanoparticles revealed by the peak signals. By comparing the published trace element data of pyrite and arsenopyrite from the Yanshanian large gold deposits from the Jiangnan terrain, we discover that contents of Sb, Cu, Se and Te are of certain differences among these deposits with different elemental assemblage, indicating that, to some extent, trace element composition of gold−bearing sulfide could provide important information on the ore−forming processes differences.

  • 加载中
  • [1] Cook N J, Chryssoulis S L. 1990. Concentrations of "invisible gold" in the common sulfides[J]. Canadian Mineralogist, 28: 1−16.

    Google Scholar

    [2] Cook N J, Ciobanu C L, Meria D, et al. 2013. Arsenopyrite–pyrite association in an orogenic gold ore: Tracing mineralization history from textures and trace elements[J]. Economic Geology, 108(6): 1273−1283. doi: 10.2113/econgeo.108.6.1273

    CrossRef Google Scholar

    [3] Dai J F, Xu D R, Zhang J, et al. 2023. Textural and LA−ICP−MS trace element analyses reveal co−enriched Au−Sb−W metallogeny in the Woxi deposit, west Jiangnan Orogen, South China[J]. Ore Geology Reviews, 154: 105333. doi: 10.1016/j.oregeorev.2023.105333

    CrossRef Google Scholar

    [4] Deditius A P, Reich M, Kesler S E, et al. 2014. The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits[J]. Geochimica Cosmochimica Acta, 140: 644−670. doi: 10.1016/j.gca.2014.05.045

    CrossRef Google Scholar

    [5] Deng T, Xu D R, Chi G X, et al. 2018. Revisiting the ca. 845~820 Ma S type granitic magmatism in the Jiangnan Orogen: New insights on the Neoproterozoic tectono magmatic evolution of South China[J]. International Geology Review, 61(4): 383−403.

    Google Scholar

    [6] Deng T, Xu D R, Chi G X, et al. 2020. Caledonian (Early Paleozoic) veins overprinted by Yanshanian (Late Mesozoic) gold mineralization in the Jiangnan Orogen: A case study on gold deposits in northeastern Hunan, South China[J]. Ore Geology Reviews, 124: 103586. doi: 10.1016/j.oregeorev.2020.103586

    CrossRef Google Scholar

    [7] Ding X, Chen P R, Chen W F, et al. 2005. Zircon LA−ICPMS U−Pb dating in granite from Weishan, Hunan Province: Diagenetic insights and significance. Scienec China[J]. Earth Science, 35(7): 606−616 (in Chinese with English abstract).

    Google Scholar

    [8] Dong G J, Xu D R, Wang L, et al. 2008. Determination of mineralizing ages on gold ore deposits in the eastern Hunan Province south China and isotopic tracking on ore−forming fluids—Re−discussing gold ore deposit type[J]. Geotectonica et Metallogenia, 32(4): 482−491 (in Chinese with English abstract).

    Google Scholar

    [9] Fan H R, Li X H, Zuo Y B, et al. 2018. In−situ LA−( MC)−ICPMS and (Nano) SIMS trace elements and sulfur isotope analyses on sulfides and application to confine metallogenic process of ore deposit[J]. ActaPetrologica Sinica, 34(12): 3479−3496 (in Chinese with English abstract).

    Google Scholar

    [10] Fleet M E, Mumin A H. 1997. Gold−bearing arsenian pyrite and marcasite and arsenopyrite from Carlin Trend gold deposits and laboratory synthesis[J]. American Mineralogist, 82(1/2): 182−193.

    Google Scholar

    [11] Fougerouse D, Micklethwaite S, Tomkins A G, et al. 2016. Gold remobilisation and formation of high grade ore shoots driven by dissolution−reprecipitation replacement and Ni substitution into auriferous arsenopyrite[J]. Geochimica et Cosmochimica Acta, 178: 143−159. doi: 10.1016/j.gca.2016.01.040

    CrossRef Google Scholar

    [12] Fougerouse D, Reddy S, Aylmore M, et al. 2021. A new kind of invisible gold in pyrite hosted in deformation−related dislocations[J]. Geology, 49(10): 1225−1229. doi: 10.1130/G49028.1

    CrossRef Google Scholar

    [13] Gao L, Peng J S. 2017. The characteristics and rules of native gold orebody in Jintang oreblock Vein No. 3[J]. Land & Resources Herald, 14(2): 69−73 (in Chinese with English abstract).

    Google Scholar

    [14] Greentree M R, Li Z X, Li X H, et al. 2006. Late Mesoproterozoic to earliest Neoproterozoic basin record of the Sibao orogenesis in west south China and relationship to the assembly of Rodinia[J]. Precambrian Research, 151: 79−100. doi: 10.1016/j.precamres.2006.08.002

    CrossRef Google Scholar

    [15] Hu R Z, Fu S L, Huang Y. 2017. The giant south China Mesozoic low−temperature metallogenic domain: Reviews and a new geodynamic model[J]. Journal of Asian Earth Sciences, 137: 9−34.

    Google Scholar

    [16] Hu A X, Wen J, Peng J T. 2023. The accumulation mechanism of giant ores in the Xikuangshan antimony deposit, central Hunan: Constraints from fluid inclusions hosted in calcite[J]. Geological Bulletin of China, 42(7): 1166−1178 (in Chinese with English abstract).

    Google Scholar

    [17] Huang J Z, Shun J, Zhou C. 2020. Metallogenic regularity and resource potential of gold deposits of Hunan area in the Jiangnan Orogenic Belt, South China[J]. Acta Scientica Sinica, (2): 230−252.

    Google Scholar

    [18] Large R R, Maslennikov V V, Robert F, et al. 2007. Multistage sedimentary and metamorphic origin of pyrite and gold in the giant Sukhoi Log deposit, Lena gold province. Russia[J]. Economic Geology, 102(7): 1233−1267.

    Google Scholar

    [19] Li J A, Zhang Y Q, Dong S W, et al. 2015. LA−MC−ICPMS zircon U−Pb geochronology of the Hongxiaqiao and Banshanpu granitoids in eastern Hunan Province and its geological implications[J]. Acta Geoscientica Sinica, 36(2): 187−196 (in Chinese with English abstract).

    Google Scholar

    [20] Li P, Zhang L P, Li J K, et al. 2021b. Metallogenic regularity of rare metal deposits in Mufushan area of CentralChina, and its application in ore prospecting[J]. Mineral Deposits, 40(4): 819−841 (in Chinese with English abstract).

    Google Scholar

    [21] Li W, X G Q, Zhang Z Y, et al. 2016. Constraint on the genesis of Gutaishan gold deposit in central HunanProvince: Evidence from fluid inclusion and C−H−O isotopes[J]. Acta Petrologica Sinica, 32(11): 3489−3506 (in Chinese with English abstract).

    Google Scholar

    [22] Li W, Cook N J, Xie G Q, et al. 2021. Complementary textural, trace element and isotope analysis of sulfides constrain ore−forming processes for the slate−hosted Yuhengtang Au deposit, South China[J]. Economic Geology, 116: 1825−1848. doi: 10.5382/econgeo.4847

    CrossRef Google Scholar

    [23] Li W, Cook N J, Xie G Q, et al. 2019. Textures and trace element signatures of pyrite and arsenopyrite from the Gutaishan Au–Sb deposit, south China[J]. Mineralium Deposita, 54: 591−610. doi: 10.1007/s00126-018-0826-0

    CrossRef Google Scholar

    [24] Li W, Xie G Q, Mao J W, et al. 2023. Precise age constraints for the Woxi Au–Sb–W deposit, South China[J]. Economic Geology, 118: 509−518. doi: 10.5382/econgeo.4971

    CrossRef Google Scholar

    [25] Li W, Xie G Q, Mao J W, et al. 2018. Muscovite 40Ar/39Ar and in situ sulfur isotope analyses of the slate−hosted Gutaishan Au–Sb deposit, south China: Implications for possible Late Triassic magmatic−hydrothermal mineralization[J]. Ore Geology Reviews, 101: 839−853. doi: 10.1016/j.oregeorev.2018.08.006

    CrossRef Google Scholar

    [26] Li Y D, Ma M, Cai W Y, et al. 2024. Genesis of Yinan gold deposit in Luxi district: Constrain from REE and trace elements of sulfide ore and wall−rock[J]. Geological Bulletin of China, 43(6): 896−913 (in Chinese with English abstract).

    Google Scholar

    [27] Liang Q L, Xie Z J, Song X Y, et al. 2021. Evolution of invisible Au in arsenian pyrite in Carlin−type Au deposits[J]. Economic Geology, 116(2): 515−526. doi: 10.5382/econgeo.4781

    CrossRef Google Scholar

    [28] Liu Y S, Hu Z C, Gao S, et al. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA−ICP−MS without applying an internal standard[J]. Chemical Geology, 257(1/2): 34−43.

    Google Scholar

    [29] Liu Y, Zhang L, Sun S C, et al. 2017. Mineralization mechanism of Yangshanzhuang gold deposit, northeastern Hunan Province[J]. Acta Petrologica Sinica, 33(7): 2273−2284 (in Chinese with English abstract).

    Google Scholar

    [30] Lu Y J , Cui W D, Sun C Y, et al. 1989. Study on the occurrence of gold in arsenopyrite of Huang−jindong gold deposit in Hunan Province[J]. Contributions to Geology and Mineral Resources Research, 4(1): 42−49 (in Chinese with English abstract).

    Google Scholar

    [31] Mao J W, Li Y G. 1997a. Researcg on genesis of the gold deposets in the Jiangnan terrain[J]. Geochimica, 26(5): 71−81 (in Chinese with English abstract).

    Google Scholar

    [32] Mao J W, Li Y G, Xu Y, et al. 1997b. Geology and Achievements of Gold Deposits in the Wangu Region of Hunan Province[M]. Beijing: Atomic Energy Publishing House (in Chinese).

    Google Scholar

    [33] Meng Y Q, Li W, Mao J W, et al. 2024. Trace elements and sulfur isotopic composition of sedimentary pyrite on constraining ore genesis of Huangjindong gold deposit[J]. Mineral Deposits, 43 (4): 935–950 (in Chinese with English abstract).

    Google Scholar

    [34] Morey A A, Tomkins A G, Bierlein F P. 2008. Bimodal distribution of gold in pyrite and arsenopyrite: Examples from the Archean Boorara and Bardoc shear systems, Yilgarn Craton, western Australia[J]. Economic Geology, 103(3): 599−614. doi: 10.2113/gsecongeo.103.3.599

    CrossRef Google Scholar

    [35] Pokrovski G S, Borisova A Y, Bychkov A Y, et al. 2013. Speciation and Transport of Metals and Metalloids in Geological Vapors[J]. Reviews in Mineralogy Geochemistry, 76(1): 165−218. doi: 10.2138/rmg.2013.76.6

    CrossRef Google Scholar

    [36] Reich M, Kesler S E, Utsunomiya S, et al. 2005. Solubility of gold in arsenian pyrite[J]. Geochimica et Cosmochimica Acta, 69(11): 2781−2796. doi: 10.1016/j.gca.2005.01.011

    CrossRef Google Scholar

    [37] Seward T M. 1973. Thio complexes of gold and the transport of gold in hydrothermal ore solutions[J]. Geochimica et Cosmochimica Acta, 37(3): 379−399. doi: 10.1016/0016-7037(73)90207-X

    CrossRef Google Scholar

    [38] Sun S C, Zhang L, Wu S G, et al. 2018. Metallogenic mechanism of the Huangjindong gold deposit, Jiangnan Orogenic Belt: Constraints from mineral formation environment and physicochemical conditions ofmetallogenesis[J]. Acta Petrologica Sinica, 34(5): 1469−1483 (in Chinese with English abstract).

    Google Scholar

    [39] Wan T A, Xu D R, Ma W, et al. 2022. Trace Element Characteristics of Different Chronology Pyrite in Wangu Gold De−posit, Northeast Hunan and Its Implication to Gold Mineralization Mechanism[J]. Gold Science and Technology, 30(5): 676−690 (in Chinese with English abstract).

    Google Scholar

    [40] Wei H T , Shao Y J, Wang C, et al. 2020. Petrogenesis of the Granitoids in the Jinji Au Deposit, Northeastern Hunan Province[J]. Acta Geoscientica Sinica, 41(2): 253–266 (in Chinese with English abstract).

    Google Scholar

    [41] Wen Z L , Deng T, Dong G J, et al. 2016. Characteristics of ore−controlling Structures of Wangu gold depositin northeastern Hunan Province[J]. Geotectonica et Metallogenia, 40(2): 281–294 (in Chinese with English abstract).

    Google Scholar

    [42] Wu Y F, Fougerouse D, Evans K, et al. 2019. Gold, arsenic, and copper zoning in pyrite: A record of fluid chemistry and growth kinetics[J]. Geology, 47: 641−644.

    Google Scholar

    [43] Xu D R, Wang L, Li P C. 2009. Petrogenesis of the Liyunshan granites in northeastern Hunan Province, South China, and its geodynamic implication[J]. Acta Petrologica Sinica, 25(5): 1056−1078.

    Google Scholar

    [44] Xu D R, Zou F H, Ning J T, et al. 2017a. Discussion on geological andstructural characteristics and associated metallogeny in northeastern Hunan Province, South China[J]. Acta Petrologica Sinica, 33(3): 695−715 (in Chinese with English abstract).

    Google Scholar

    [45] Xu D R, Deng T, Chi G X, et al. 2017b. Gold mineralization in the Jiangnan orogenic belt of south China: Geological, geochemical and geochronological characteristics, ore deposit−type and geodynamic setting[J]. Ore Geology Reviews, 88: 565−618. doi: 10.1016/j.oregeorev.2017.02.004

    CrossRef Google Scholar

    [46] Xu K, Xu D R. 2022. Study on the formation mechanism of altered rock type gold mineralization of Huangjindong gold deposit in Jiangnan Orogenic Belt[J]. Gold Science and Technology, 30(2): 151−164 (in Chinese with English abstract).

    Google Scholar

    [47] Yin F Y, Li W, Xie G Q, et al. 2024. Genesis of the Wangu Au deposit in the Jiangnan orogenic belt: Constraints from texture, trace element, and in−situ Sr isotope of scheelite[J]. Ore Geology Reviews, 106375.

    Google Scholar

    [48] Zhang L, Groves D, Yang L Q, et al. 2020. Utilization of pre−existing competent and barren quartz veins as hosts to later orogenic gold ores at Huangjindong gold deposit, Jiangnan Orogen, southern China[J]. Mineralium Deposita, 55: 363−380. doi: 10.1007/s00126-019-00904-5

    CrossRef Google Scholar

    [49] Zhang L, Yang L Q, Groves D I, et al. 2019a. An overview of timing and structural geometry of gold, gold−antimony and antimony mineralization in the Jiangnan Orogen, southern China[J]. Ore Geology Reviews, 115: 103173. doi: 10.1016/j.oregeorev.2019.103173

    CrossRef Google Scholar

    [50] Zhang L, Yang L Q, Groves D I, et al. 2018. Geological and isotopic constraints on ore genesis, Huangjindong gold deposit, Jiangnan Orogen, southern China[J]. Ore Geology Reviews, 99: 264−281. doi: 10.1016/j.oregeorev.2018.06.013

    CrossRef Google Scholar

    [51] Zhang W L, Hu W X, Hu S X, et al. 1997. Study on the mode of gold in arsenopyrite from Huangjindong gold deposit, Hunan, by using electron probe microanalysis[J]. Geological Journal of China Universities, 3(3): 256−262 (in Chinese with English abstract).

    Google Scholar

    [52] Zhang Z Y, Xie G Q, Olin P, et al. 2022. Texture, in−situ geochemical, and S isotopic analyses of pyrite and arsenopyrite from the Longshan Sb−Au deposit, southern China: Implications for the genesis of intrusion−related Sb−Au deposit[J]. Ore Geology Reviews, 143: 104781. doi: 10.1016/j.oregeorev.2022.104781

    CrossRef Google Scholar

    [53] Zhang Z Y, Xie G Q, Mao J W, et al. 2019b. Sm−Nd dating and In−situ LA−ICP−MS trace element analyses of scheelite from the Longshan Sb−Au deposit, Xiangzhong Metallogenic Province, South China[J]. Minerals, 9(87). doi:10.3390/min9020087

    Google Scholar

    [54] Zhang Z Y, Xie G Q, Li H C, et al. 2018. Preliminary study on muscovite 40Ar−39Ar geochronology and its significance ofthe Longshan Sb−Au deposit in Hunan Province[J]. Acta Petrologica Sinica, 34(9): 2535−2547 (in Chinese with English abstract).

    Google Scholar

    [55] Zhou Y Q, Dong G J, Xu D R, et al. 2021. Scheelite Sm−Nd age of the Huangjindong Au deposit in Hunanand its geological significance[J]. Geochimica, 50(4): 381–397 (in Chinese with English abstract).

    Google Scholar

    [56] Zhou Y Q, Xu D R, Dong G J, et al. 2021. The role of structural reactivation for gold mineralization in northeastern Hunan Province, South China[J]. Journal of Structural Geology, 145: 104306. doi: 10.1016/j.jsg.2021.104306

    CrossRef Google Scholar

    [57] 丁兴, 陈培荣, 陈卫锋, 等. 2005. 湖南沩山花岗岩中锆石LA–ICPMS U−Pb定年: 成岩启示和意义[J]. 中国科学: 地球科学, 35(7): 606−616.

    Google Scholar

    [58] 董国军, 许德如, 王力, 等. 2008. 湘东地区金矿床矿化年龄的测定及含矿流体来源的示踪——兼论矿床成因类型[J]. 大地构造与成矿学, 32(4): 482−491. doi: 10.3969/j.issn.1001-1552.2008.04.012

    CrossRef Google Scholar

    [59] 范宏瑞, 李兴辉, 左亚彬, 等. 2018. LA−(MC)−ICPMS 和(Nano) SIMS硫化物微量元素和硫同位素原位分析与矿床形成的精细过程[J]. 岩石学报, 34(12): 3479−3496.

    Google Scholar

    [60] 高磊, 彭劲松. 2017. 湖南省平江县黄金洞矿区金塘矿段3号脉明金矿体特征及规律[J]. 国土资源导刊, 14(2): 69−73.

    Google Scholar

    [61] 黄建中, 孙骥, 周超, 等. 2020. 江南造山带(湖南段)金矿成矿规律与资源潜力[J]. 地球学报, (2): 230−252.

    Google Scholar

    [62] 胡阿香, 文静, 彭建堂. 2023. 湘中锡矿山锑矿床巨量矿石堆积机制: 来自方解石流体包裹体的约束[J]. 地质通报, 42(7): 1166−1178. doi: 10.12097/j.issn.1671-2552.2023.07.009

    CrossRef Google Scholar

    [63] 李建华, 张岳桥, 董树文, 等. 2015. 湘东宏夏桥和板杉铺岩体LA−MC−ICPMS锆石U−Pb年龄及地质意义[J]. 地球学报, 36(2): 187−196. doi: 10.3975/cagsb.2015.02.07

    CrossRef Google Scholar

    [64] 李鹏, 张立平, 李建康, 等. 2021. 江南造山带中段幕阜山地区稀有金属成矿规律及其在找矿中的应用[J]. 矿床地质, 40(4): 819−841.

    Google Scholar

    [65] 李伟, 谢桂青, 张志远, 等. 2016. 流体包裹体和C−H−O同位素对湘中古台山金矿床成因制约[J]. 岩石学报, 32: 3489−3506.

    Google Scholar

    [66] 李亚东, 马明, 蔡文艳, 等. 2024. 鲁西地区沂南金矿床成因: 硫化物矿石与围岩稀土和微量元素的制约[J]. 地质通报, 43(6): 896−913. doi: 10.12097/gbc.2022.12.019

    CrossRef Google Scholar

    [67] 刘英俊, 崔卫东, 孙承辕, 等. 1989. 湖南黄金洞金矿床毒砂中金的赋存状态的研究[J]. 地质找矿论丛, 4(1): 42−49.

    Google Scholar

    [68] 刘育, 张良, 孙思辰, 等. 2017. 湘东北杨山庄金矿床流体成矿机制[J]. 岩石学报, 33(7): 2273−2284.

    Google Scholar

    [69] 毛景文, 李红艳. 1997a. 江南古陆某些金矿床成因讨论[J]. 地球化学, 26(5): 71−81.

    Google Scholar

    [70] 毛景文, 李红艳, 徐钰, 等. 1997b. 湖南万古地区金矿地质与成果[M]. 北京: 原子能出版社.

    Google Scholar

    [71] 孟亚群, 李伟, 毛景文, 等. 2024. 沉积黄铁矿微量元素和硫同位素组成对黄金洞金矿床的成因约束[J]. 矿床地质, 43(4): 935−950.

    Google Scholar

    [72] 孙思辰, 张良, 吴圣刚, 等. 2018. 江南造山带黄金洞金矿床成矿机制: 矿物形成环境与金成矿物理化学条件制约[J]. 岩石学报, 34(5): 1469−1483.

    Google Scholar

    [73] 万泰安, 许德如, 马文, 等. 2022. 湘东北万古金矿床不同期次黄铁矿微量元素特征及其对金成矿机制的启示[J]. 黄金科学技术, 30(5): 676−690.

    Google Scholar

    [74] 隗含涛, 邵拥军, 汪程, 等. 2020. 湘东北金鸡金矿床岩体成岩机制[J]. 地球学报, 41(2): 253−266. doi: 10.3975/cagsb.2020.010701

    CrossRef Google Scholar

    [75] 文志林, 邓腾, 董国军, 等. 2016. 湘东北万古金矿床控矿构造特征与控矿规律研究[J]. 大地构造与成矿学, 40(2): 281−294.

    Google Scholar

    [76] 许德如, 王力, 李鹏春, 等. 2009. 湘东北地区连云山花岗岩的成因及地球动力学暗示[J]. 岩石学报, 25(5): 1056−1078.

    Google Scholar

    [77] 许德如, 邹凤辉, 宁钧陶, 等. 2017. 湘东北地区地质构造演化与成矿响应探讨[J]. 岩石学报, 33(3): 695−715.

    Google Scholar

    [78] 许可, 许德如. 2022. 江南造山带黄金洞金矿蚀变岩型金矿化形成机制研究[J]. 黄金科学技术, 30(2): 151−164. doi: 10.11872/j.issn.1005-2518.2022.02.139

    CrossRef Google Scholar

    [79] 张文兰, 胡文宣, 胡受奚, 等. 1997. 湖南黄金洞金矿毒砂中Au 赋存状态的电子探针研究[J]. 高校地质学报, 3(3): 256−262.

    Google Scholar

    [80] 张志远, 谢桂青, 李惠纯, 等. 2018b. 湖南龙山锑金矿床白云母40Ar−39Ar年代学及其意义初探[J]. 岩石学报, 34(9): 2535−2547.

    Google Scholar

    [81] 周岳强, 董国军, 许德如, 等. 2021. 湖南黄金洞金矿床白钨矿Sm−Nd 年龄及其地质意义[J]. 地球化学, 50(4): 381−397.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(3)

Article Metrics

Article views(353) PDF downloads(55) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint