2024 Vol. 43, No. 10
Article Contents

ZHANG Qi, ZHAI Mingguo, WEI Chunjing, JIAO Shoutao, ZHOU Ligang, HUANG Guangyu, CHEN Wanfeng, TANG Jun, LIU Rui, YUAN Jie, WANG Zhen, WANG Yue, YUAN Fanglin. 2024. Theory and method of mapping the lower crust. Geological Bulletin of China, 43(10): 1673-1688. doi: 10.12097/gbc.2023.01.030
Citation: ZHANG Qi, ZHAI Mingguo, WEI Chunjing, JIAO Shoutao, ZHOU Ligang, HUANG Guangyu, CHEN Wanfeng, TANG Jun, LIU Rui, YUAN Jie, WANG Zhen, WANG Yue, YUAN Fanglin. 2024. Theory and method of mapping the lower crust. Geological Bulletin of China, 43(10): 1673-1688. doi: 10.12097/gbc.2023.01.030

Theory and method of mapping the lower crust

  • The condition of the lower crust in a region at a certain time is a question that has not been considered by academia, for the reason that there is no means. Our recent research on the origin of granite shows that granite is derived from partial melting of lower crust metamorphic rocks, and the granite is in equilibrium with the melt residual phase. Therefore, we can invert the characteristics of metamorphic rocks in the lower crust based on the characteristics of granite at the surface. On the other hand, the progress in the research of metamorphic rock indicate that it is possible to construct apparent profiles of metamorphic rocks of different compositions according to different temperature and pressure conditions, and to infer the properties of the melts formed during partial melting. The combination of these two aspects forms the theoretical basis for the mapping of the lower crustal, based on which to understand the conditions at the bottom of the lower crust, and thus the mapping method of the lower crust is derived. This paper discusses the method of mapping the lower crust, discusses the content of the lower crustal geological map that may be expressed in the current situation, focuses on the lower crustal information can be given by granite, and puts forward the principles for dealing with controversial issues. It also discusses how to map the lower crust in the absence of granite outcropping, and the information of the lower crust that may be provided by sedimentation, stratigraphy, paleontology, minerals, and structure are discussed, and the vitrinite reflectance method is recommended. In addition, the significance and limitations of lower crustal mapping are also discussed. At last, we discussed the function and significance of lower crust mapping by taking the geological map of the lower crust in the Early Cretaceous of Shanxi Province as an example.

  • 加载中
  • [1] Ayres M, Harris N. 1997. REE fractionation and Nd−isotope disequilibrium during crustal anatexis: constraints from Himalayan leucogranites[J]. Chemical Geology, 139(1/4): 249−269. doi: 10.1016/S0009-2541(97)00038-7

    CrossRef Google Scholar

    [2] Bohlen S R, Mezger K. 1989. Origin of granulite terranes and the formation of the lowermost continental crust[J]. Science, 244(4902): 326−329. doi: 10.1126/science.244.4902.326

    CrossRef Google Scholar

    [3] Bonin B, Janousek V, Moyen J F. 2020. Chemical variation, modal composition and classification of granitoids[J]. Geological Society, London, Special Publications, 491(1): 9−51.

    Google Scholar

    [4] Bonin B. 2007. A−type granites and related rocks: evolution of a concept, problems and prospects[J]. Lithos, 97(1/2): 1−29. doi: 10.1016/j.lithos.2006.12.007

    CrossRef Google Scholar

    [5] Brown M. 1994. The generation, segregation, ascent and emplacement of granite magma: the migmatite−to−crustally−derived granite connection in thickened orogens[J]. Earth−Science Reviews, 36(1/2): 83−130. doi: 10.1016/0012-8252(94)90009-4

    CrossRef Google Scholar

    [6] Brown M. 2007. Crustal melting and melt extraction, ascent and emplacement in orogens: mechanisms and consequences[J]. Journal of the Geological Society, 164(4): 709−730. doi: 10.1144/0016-76492006-171

    CrossRef Google Scholar

    [7] Brown M. 2010. The spatial and temporal patterning of the deep crust and implications for the process of melt extraction[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1910): 11−51.

    Google Scholar

    [8] Brown M. 2013. Granite: From genesis to emplacement[J]. GSA Bulletin, 125(7/8): 1079−1113. doi: 10.1130/B30877.1

    CrossRef Google Scholar

    [9] Brown, M. 2004. Melt extraction from lower continental crust[J]. Transactions of the Royal Society of Edinburgh−Earth Sciences, 95: 35-48.

    Google Scholar

    [10] Chappell B W, White A J R, Wyborn D. 1987. The importance of residual source material (restite) in granite petrogenesis[J]. Journal of Petrology, 28(6): 1111−1138. doi: 10.1093/petrology/28.6.1111

    CrossRef Google Scholar

    [11] Chappell B W, White A J R. 1992. I−and S−type granites in the Lachlan Fold Belt[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 83(1/2): 1−26. doi: 10.1017/S0263593300007720

    CrossRef Google Scholar

    [12] Chappell B W. 1974. Two contrasting granite types[J]. Pacif. Geol. 8: 173−174.

    Google Scholar

    [13] Christensen N I, Mooney W D. 1995. Seismic velocity structure and composition of the continental crust: A global view[J]. Journal of Geophysical Research: Solid Earth, 100(B6): 9761−9788. doi: 10.1029/95JB00259

    CrossRef Google Scholar

    [14] Clemens J D, Petford N. 1999. Granitic melt viscosity and silicic magma dynamics in contrasting tectonic settings[J]. Journal of the Geological Society, 156(6): 1057−1060. doi: 10.1144/gsjgs.156.6.1057

    CrossRef Google Scholar

    [15] Clemens J D, Stevens G. 2012. What controls chemical variation in granitic magmas?[J]. Lithos, 134: 317−329.

    Google Scholar

    [16] Clemens J D. 2006. Melting of the continental crust: Fluid regimes, melting reactions, and source−rock fertility[M]. Cambridge University Press: 297−331.

    Google Scholar

    [17] Cottle J M, Lederer G W, Larson K P. 2019. Petrochronologic insight into the assembly of Himalayan plutons[C]//GSA Annual Meeting in Phoenix, Arizona, USA.

    Google Scholar

    [18] Couzinié S, Laurent O, Poujol M, et al. 2017. Cadomian S−type granites as basement rocks of the Variscan belt (Massif Central, France): Implications for the crustal evolution of the north Gondwana margin[J]. Lithos, 286: 16−34.

    Google Scholar

    [19] Creaser R A, Price R C, Wormald R J. 1991. A−type granites revisited: assessment of a residual−source model[J]. Geology, 19(2): 163−166. doi: 10.1130/0091-7613(1991)019<0163:ATGRAO>2.3.CO;2

    CrossRef Google Scholar

    [20] DeCelles P G, Quade J, Kapp P, et al. 2007. High and dry in central Tibet during the Late Oligocene[J]. Earth and Planetary Science Letters, 253(3/4): 389−401. doi: 10.1016/j.jpgl.2006.11.001

    CrossRef Google Scholar

    [21] Dong S B. 1995. A general review on the recent sudies of granite[J]. Geological Journal of Universities, (2): 1−12(in Chinese with English abstract).

    Google Scholar

    [22] Drummond M S, Defant M J. 1990. A model for trondhjemite−tonalite−dacite genesis and crustal growth via slab melting: Archean to modern comparisons[J]. Journal of Geophysical Research: Solid Earth, 95(B13): 21503−21521. doi: 10.1029/JB095iB13p21503

    CrossRef Google Scholar

    [23] Eby G N. 1979. Mount Johnson, Quebec−An example of silicate−liquid immiscibility?[J]. Geology, 7(10): 491−494. doi: 10.1130/0091-7613(1979)7<491:MJQAEO>2.0.CO;2

    CrossRef Google Scholar

    [24] Eby G N. 1992. Chemical subdivision of the A−type granitoids: petrogenetic and tectonic implications[J]. Geology, 20(7): 641−644. doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2

    CrossRef Google Scholar

    [25] Fiannacca P, Cirrincione R, Bonanno F, et al. 2015. Source−inherited compositional diversity in granite batholiths: The geochemical message of Late Paleozoic intrusive magmatism in central Calabria (southern Italy)[J]. Lithos, 236: 123−140.

    Google Scholar

    [26] Fjeldskaar W, Helset H M, Johansen H, et al. 2008. Thermal modelling of magmatic intrusions in the Gjallar Ridge, Norwegian Sea: implications for vitrinite reflectance and hydrocarbon maturation[J]. Basin Research, 20(1): 143−159. doi: 10.1111/j.1365-2117.2007.00347.x

    CrossRef Google Scholar

    [27] Fyfe W S. 1973. The granulite facies, partial melting and the Archaean crust. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 273: 457−461.

    Google Scholar

    [28] Gao L E, Zeng L, Asimow P D. 2017. Contrasting geochemical signatures of fluid−absent versus fluid−fluxed melting of muscovite in metasedimentary sources: The Himalayan leucogranites[J]. Geology, 45(1): 39−42.

    Google Scholar

    [29] Gray C M. 1984. An isotopic mixing model for the origin of granitic rocks in southeastern Australia[J]. Earth and Planetary Science Letters, 70(1): 47−60. doi: 10.1016/0012-821X(84)90208-5

    CrossRef Google Scholar

    [30] Guo J, Zheng Y F, Zhao Z F, et al. 2022. Generation of aluminous A−type granite by partial melting of felsic restite: Evidence from Mesozoic granitoids in the southern margin of the North China Craton[J]. Lithos, 428: 106837.

    Google Scholar

    [31] Hacker B R, Kelemen P B, Behn M D. 2011. Differentiation of the continental crust by relamination[J]. Earth and Planetary Science Letters, 307(3/4): 501−516. doi: 10.1016/j.jpgl.2011.05.024

    CrossRef Google Scholar

    [32] Hacker B R, Kelemen P B, Behn M D. 2015. Continental lower crust[J]. Annual Review of Earth and Planetary Sciences, 43(1): 167−205. doi: 10.1146/annurev-earth-050212-124117

    CrossRef Google Scholar

    [33] Harley S L. 2016. A matter of time: the importance of the duration of UHT metamorphism[J]. Journal of Mineralogical and Petrological Sciences, 111(2): 50−72. doi: 10.2465/jmps.160128

    CrossRef Google Scholar

    [34] Harris N B W, Pearce J A, Tindle A G. 1986. Geochemical characteristics of collision−zone magmatism[J]. Geological Society, London, Special Publications, 19(1): 67−81.

    Google Scholar

    [35] Healy B, Collins W J, Richards S W. 2004. A hybrid origin for Lachlan S−type granites: The Murrumbidgee batholith example[J]. Lithos, 78(1/2): 197−216. doi: 10.1016/j.lithos.2004.04.047

    CrossRef Google Scholar

    [36] Inger S, Harris N. 1993. Geochemical constraints on leucogranite magmatism in the Langtang valley, Nepal Himalaya[J]. Journal of Petrology, 34(2): 345−368. doi: 10.1093/petrology/34.2.345

    CrossRef Google Scholar

    [37] Jacob J B, Moyen J F. 2021. Granite and related rocks[C]//Alderton D, Elias S A. Encyclopedia of Geology (Second Edition). Academic Press.

    Google Scholar

    [38] Ji M, Gao X Y, Zheng Y F, et al. 2021. Metapelites record two episodes of decompressional metamorphism in the Himalayan orogen[J]. Lithos, 394: 106−183.

    Google Scholar

    [39] Ji M, Gao X Y, Zheng Y F. 2022. Geochemical evidence for partial melting of progressively varied crustal sources for leucogranites during the Oligocene−Miocene in the Himalayan orogen[J]. Chemical Geology, 589: 120−674.

    Google Scholar

    [40] Jiao S T, Zhang Q, Jin W J, et al. 2016. A good method for finding concealed rock: Magma-thermal field method[J]. Acta Petrologica Sinica, 32(2): 617−628 (in Chinese with English abstract).

    Google Scholar

    [41] Jiao S T, Liu D N, Zhang Q, et al. 2024. Lower Crust Geological map of the Early Cretaceous of Shanxi Province(Ⅱ)- Based on vitrinite reflectance data[J/OL]. Earth Science Frontiers[2024-10-15], https://doi.org/10.13745/j.esf.sf.2024.10.20.

    Google Scholar

    [42] Johnson T, Yakymchuk C, Brown M. 2021. Crustal melting and suprasolidus phase equilibria: From first principles to the state−of−the−art[J]. Earth−Science Reviews, 221: 103−778.

    Google Scholar

    [43] Kempton P D, Downes H, Sharkov E V, et al. 1995. Petrology and geochemistry of xenoliths from the Northern Baltic shield: Evidence for partial melting and metasomatism in the lower crust beneath an Archaean terrane[J]. Lithos, 36(3/4): 157−184. doi: 10.1016/0024-4937(95)00016-X

    CrossRef Google Scholar

    [44] Kempton P D, Harmon R S, Hawkesworth C J, et al. 1990. Petrology and geochemistry of lower crustal granulites from the Geronimo volcanic field, southeastern Arizona[J]. Geochimica et Cosmochimica Acta, 54(12): 3401−3426. doi: 10.1016/0016-7037(90)90294-U

    CrossRef Google Scholar

    [45] Kern H, Gao S, Liu Q S. 1996. Seismic properties and densities of middle and lower crustal rocks exposed along the North China geoscience transect[J]. Earth and Planetary Science Letters, 139(3/4): 439−455. doi: 10.1016/0012-821X(95)00240-D

    CrossRef Google Scholar

    [46] Ketcham R A. 1996. Thermal models of core−complex evolution in Arizona and New Guinea: Implications for ancient cooling paths and present−day heat flow[J]. Tectonics, 15(5): 933−951. doi: 10.1029/96TC00033

    CrossRef Google Scholar

    [47] Knesel K M, Davidson J P. 2002. Insights into collisional magmatism from isotopic fingerprints of melting reactions[J]. Science, 296(5576): 2206−2208. doi: 10.1126/science.1070622

    CrossRef Google Scholar

    [48] Kriegsman L M. 2001. Partial melting, partial melt extraction and partial back reaction in anatectic migmatites[J]. Lithos, 56(1): 75−96. doi: 10.1016/S0024-4937(00)00060-8

    CrossRef Google Scholar

    [49] Li X H, Xu B L, Chen Y H, et al. 2008. Clay Minerals of the Middle−Late Mesozoic Mudrocks from North and Northeast China: Implications to Paleoclimate and Paleohighland[J]. Acta Geologica Sinica, (5): 683−691(in Chinese with English abstract).

    Google Scholar

    [50] Liu Y Y, Li Y, Shao Y X, et al. 2022. Research on the accuracy of Beidou Navigation Satellite System (BDS) in crustal motion monitoring[J]. Seismological and Geomagnetic Observation and Research, 43(3): 65−69(in Chinese with English abstract).

    Google Scholar

    [51] Loiselle M C. 1979. Characteristics and origin of anorogenic granites[J]. Geol. Soc. Am., 11: 468.

    Google Scholar

    [52] Martin H, Smithies R H, Rapp R, et al. 2005. An overview of adakite, tonalite−trondhjemite−granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution[J]. Lithos, 79(1/2): 1−24. doi: 10.1016/j.lithos.2004.04.048

    CrossRef Google Scholar

    [53] Morfin S, Sawyer E W, Bandyayera D. 2013. Large volumes of anatectic melt retained in granulite facies migmatites: an injection complex in northern Quebec[J]. Lithos, 168: 200−218.

    Google Scholar

    [54] Moyen J F, Stevens G. 2006. Experimental Constraints on TTG Petrogenesis: Implications for Archean Geodynamics[J]. Archean Geodynamics and Environments, 164: 149−175.

    Google Scholar

    [55] Patiño Douce A E, Harris N. 1998. Experimental constraints on Himalayan anatexis[J]. Journal of Petrology, 39(4): 689−710. doi: 10.1093/petroj/39.4.689

    CrossRef Google Scholar

    [56] Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 25(4): 956−983. doi: 10.1093/petrology/25.4.956

    CrossRef Google Scholar

    [57] Pearce J A, Lippard S J, Roberts S. 1984. Characteristics and tectonic significance of supra−subduction zone ophiolites[J]. Geological Society, London, Special Publications, 16(1): 77−94.

    Google Scholar

    [58] Petford N, Clemens J D, Vigneresse J L. 1997. Application of information theory to the formation of granitic rocks[C]//Granite: From segregation of melt to emplacement fabrics: 3−10.

    Google Scholar

    [59] Petford N, Cruden A R, McCaffrey K J W, et al. 2000. Granite magma formation, transport and emplacement in the Earth's crust[J]. Nature, 408(6813): 669−673. doi: 10.1038/35047000

    CrossRef Google Scholar

    [60] Pitcher W S. 1993. The Nature and Origin of Granite. Blackie[M], Glasgow and London: 1−316.

    Google Scholar

    [61] Quade J, Cerling T E. 1995. Expansion of C4 grasses in the late Miocene of northern Pakistan: evidence from stable isotopes in paleosols[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 115(1/4): 91−116.

    Google Scholar

    [62] Rapp R P, Watson E B, Miller C F. 1991. Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites[J]. Precambrian Research, 51(1/4): 1−25. doi: 10.1016/0301-9268(91)90092-O

    CrossRef Google Scholar

    [63] Rowley D B, Currie B S. 2006. Palaeo−altimetry of the late Eocene to Miocene Lunpola basin, central Tibet[J]. Nature, 439(7077): 677−681. doi: 10.1038/nature04506

    CrossRef Google Scholar

    [64] Rudnick R L, Gao S. 2003. Composition of the continental crust[C]//Treatise on Geochemistry.3: 1−64.

    Google Scholar

    [65] Rudnick R L. 1992. Xenoliths−samples of the lower continental crust[J]. Continental Lower Crust, 23(797): 269−316.

    Google Scholar

    [66] Sawyer E W, Cesare B, Brown M. 2011. When the continental crust melts[J]. Elements, 7(4): 229−234. doi: 10.2113/gselements.7.4.229

    CrossRef Google Scholar

    [67] Sawyer E W. 2001. Melt segregation in the continental crust: distribution and movement of melt in anatectic rocks[J]. Journal of metamorphic Geology, 19(3): 291−309. doi: 10.1046/j.0263-4929.2000.00312.x

    CrossRef Google Scholar

    [68] Schwindinger M, Weinberg R F. 2017. A felsic MASH zone of crustal magmas−feedback between granite magma intrusion and in situ crustal anatexis[J]. Lithos, 284: 109−121.

    Google Scholar

    [69] Stevens G, Villaros A, Moyen J F. 2007. Selective peritectic garnet entrainment as the origin of geochemical diversity in S−type granites[J]. Geology, 35(1): 9−12. doi: 10.1130/G22959A.1

    CrossRef Google Scholar

    [70] Villaseca C, Orejana D, Belousova E A. 2012. Recycled metaigneous crustal sources for S−and I−type variscan granitoids from the Spanish Central System Batholith: constraints from Hf isotope zircon composition[J]. Lithos, 153: 84−93. doi: 10.1016/j.lithos.2012.03.024

    CrossRef Google Scholar

    [71] Wei C J, Guan X, Dong J, et al. 2017. HT−UHT metamorphism of metabasites and the petrogenesis of TTGs[J]. Acta Petrologica Sinica, 33(5): 1381−1404(in Chinese with English abstract).

    Google Scholar

    [72] Whalen J B, Currie K L, Chappell B W. 1987. A−type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 95: 407−41. doi: 10.1007/BF00402202

    CrossRef Google Scholar

    [73] White A J R, Chappell B W. 1977. Ultrametamorphism and granitoid genesis[J]. Tectonophysics, 43(1/2): 7−22. doi: 10.1016/0040-1951(77)90003-8

    CrossRef Google Scholar

    [74] White R W, Powell R. 2010. Retrograde melt−residue interaction and the formation of near−anhydrous leucosomes in migmatites[J]. Journal of Metamorphic Geology, 28(6): 579−597. doi: 10.1111/j.1525-1314.2010.00881.x

    CrossRef Google Scholar

    [75] White R W, Stevens G, Johnson T E. 2011. Is the crucible reproducible? Reconciling melting experiments with thermodynamic calculations[J]. Elements, 7(4): 241−246. doi: 10.2113/gselements.7.4.241

    CrossRef Google Scholar

    [76] Wu F Y, Lin Q. 1990. The melting experiment of natural massive granite and its petrological significance[J]. Journal of Changchun University of Earth Science, (2): 139−146(in Chinese with English abstract).

    Google Scholar

    [77] Xu B L, Li X H, Chen Y H, et al. 2007. Clay Minerals in Northeast of the "Eastern Plateau", China[J]. Acta Geologica Sichuan, (3): 166−170(in Chinese with English abstract).

    Google Scholar

    [78] Yang J H, Wu F Y, Chung S L, et al. 2006. A hybrid origin for the Qianshan A−type granite, northeast China: geochemical and Sr−Nd−Hf isotopic evidence[J]. Lithos, 89(1/2): 89−106. doi: 10.1016/j.lithos.2005.10.002

    CrossRef Google Scholar

    [79] Yang Q, Pan Z G, Wong C M, et al. 1987. Telemagmatic Metamorphism and its Effects on Chinese Coal Properties[J]. Geoscience, (1): 123−130(in Chinese with English abstract).

    Google Scholar

    [80] Yang Q, Wu C L, Tang D Z, et al. 1996. Coal metamorphism in China[J]. Earth Science, (3): 79−87(in Chinese with English abstract).

    Google Scholar

    [81] Yang Q. 1989. A study on coal metamorphism in China[J]. Earth Science, (4): 341−345(in Chinese with English abstract).

    Google Scholar

    [82] Zhai M G, Zhang Y B, Li Q L, et al. 2021. Cratonization, lower crust and continental lithosphere[J]. Acta Petrologica Sinica. 37(1): 1−23(in Chinese with English abstract).

    Google Scholar

    [83] Zhai M G. 2008. Lower crust and lithospheric mantle beneath the North China Craton before the Mesozoic lithospheric disruption[J]. Acta Petrologica Sinica, 24(10): 2185−2204(in Chinese with English abstract).

    Google Scholar

    [84] Zhai M, Guo J, Li J, et al. 1996. Retrograded eclogites in the Archaean North China Craton and their geological implication[J]. Chinese Science Bulletin, 41(4): 315−320. doi: 10.1360/csb1996-41-4-315

    CrossRef Google Scholar

    [85] Zhang Q, Jiao S T, Li C D, et al. 2017. Granite and continental tectonics, magma thermal field and metallgenesis[J]. Acta Petrologica Sinica, 33(5): 1524−1540(in Chinese with English abstract).

    Google Scholar

    [86] Zhang Q, Jiao S T. 2020. Adakite comes from a high−pressure background: A scientific, reliable, predictable scientific discovery[J]. Acta Petrologica Sinica, 36(6): 1675−1683(in Chinese with English abstract). doi: 10.18654/1000-0569/2020.06.02

    CrossRef Google Scholar

    [87] Zhang Q, Qian Q, Wang E Q. 2001. An East China Plateau in mid-late Yanshanian Period: Implication from adakites[J]. Chinese Journal of Geology, 36(2): 248−255(in Chinese with English abstract).

    Google Scholar

    [88] Zhang Q, Li C D. 2012a. Granites: Implications for continental geodynamics[M]. Beijing: Ocean Press: 1−287(in Chinese with English abstract).

    Google Scholar

    [89] Zhang Q, Zhai M G. 2012b. What is the Archean TTG?[J]. Acta Petrologica Sinica, 28(11): 3446−3456(in Chinese with English abstract).

    Google Scholar

    [90] Zhang Q, Zhai M G, Wei C J, et al. 2022. Innovative petrogenetic classification of granitoids: Perspective from metamorphic anatexis and big data[J]. Earth Science Frontiers, 29(4): 319−329(in Chinese with English abstract).

    Google Scholar

    [91] Zhang Q, Jin Z B, Xie T J, et al. 2024. Geological map of early Cretaceous lower crust in Shanxi province(Ⅰ): Evidence from Early Cretaceous granite in Shanxi province[J/OL]. Earth Science Frontiers[2024-10-17], https://doi.org/10.13745/j.esf.sf.2024.10.19.

    Google Scholar

    [92] Zheng J, Xia B, Dai H K, et al. 2021. Lithospheric structure and evolution of the North China Craton: An integrated study of geophysical and xenolith data[J]. Scientia Sinica(Terrae), 51(2): 201−217(in Chinese with English abstract).

    Google Scholar

    [93] Zheng Y F, Gao P. 2021. The production of granitic magmas through crustal anatexis at convergent plate boundaries[J]. Lithos, 402: 106232.

    Google Scholar

    [94] 陈培荣, 章邦桐. 1994. A 型花岗岩类研究综述[J]. 国外花岗岩类地质与矿产, 4: 9−13.

    Google Scholar

    [95] 翟明国. 2008. 华北克拉通中生代破坏前的岩石圈地幔与下地壳[J]. 岩石学报, 24(10): 2185−2204.

    Google Scholar

    [96] 翟明国, 张艳斌, 李秋立, 等. 2021. 克拉通、下地壳与大陆岩石圈——庆贺沈其韩先生百年华诞[J]. 岩石学报, 37(1): 1−23. doi: 10.18654/1000-0569/2021.01.01

    CrossRef Google Scholar

    [97] 董申保. 1995. 近代花岗岩研究的回顾[J]. 高校地质学报, 1(2): 12.

    Google Scholar

    [98] 焦守涛, 张旗, 金维浚, 等. 2016. 介绍一种寻找隐伏岩体的好方法: 岩浆热场法[J]. 岩石学报, 32(2): 617−628.

    Google Scholar

    [99] 焦守涛,刘东娜,张旗,等.2024. 山西省早白垩世下地壳地质图(Ⅱ)——基于镜质组反射率证据的修正[J/OL].地学前缘[2024-10-15], https://doi.org/10.13745/j.esf.sf.2024.10.20.

    Google Scholar

    [100] 李祥辉, 徐宝亮, 陈云华, 等. 2008. 华北—东北南部地区中生代中晚期粘土矿物与古气候[J]. 地质学报, 82(5): 683-691

    Google Scholar

    [101] 刘洋洋, 李瑜, 邵银星, 等. 2022. 北斗导航定位系统(BDS)下地壳运动监测精度分析[J]. 地震地磁观测与研究, 43(3): 65−69. doi: 10.3969/j.issn.1003-3246.2022.03.010

    CrossRef Google Scholar

    [102] 桑隆康, 马昌前, 王国庆, 等. 2012. 岩石学[M]. 北京: 地质出版社.

    Google Scholar

    [103] 魏春景, 关晓, 董杰. 2017. 基性岩高温-超高温变质作用与TTG质岩成因[J]. 岩石学报, 33(5): 1381−1404.

    Google Scholar

    [104] 魏春景. 2016. 麻粒岩相变质作用与花岗岩成因——Ⅱ: 变质泥质岩高温—超高温变质相平衡与 S 型花岗岩成因的定量模拟[J]. 岩石学报, (6): 1625−1643.

    Google Scholar

    [105] 吴福元, 李献华, 杨进辉, 等. 2007. 花岗岩成因研究的若干问题[J]. 岩石学报, 23(6): 1217−1238. doi: 10.3969/j.issn.1000-0569.2007.06.001

    CrossRef Google Scholar

    [106] 吴福元, 林强. 1990. 天然花岗岩块的熔融实验及其岩石学意义[J]. 长春地质学院学报, 20(2): 139−146.

    Google Scholar

    [107] 吴珍汉, 吴中海, 胡道功, 等. 2009. 青藏高原新生代构造演化与隆升过程[M]. 北京: 地质出版社.

    Google Scholar

    [108] 徐宝亮, 李祥辉, 陈云华, 等. 2007. 中国 “东部高原” 东北部黏土矿物特征研究[J]. 四川地质学报, 27(3): 166−170. doi: 10.3969/j.issn.1006-0995.2007.03.004

    CrossRef Google Scholar

    [109] 杨起, 任德贻. 1981. 中国煤变质问题的探讨[J]. 煤田地质与勘探, 1: 1−10.

    Google Scholar

    [110] 杨起, 潘治贵, 翁成敏, 等. 1987. 区域岩浆热变质作用及其对我国煤质的影响[J]. 现代地质, 1(1): 123.

    Google Scholar

    [111] 杨起. 1989. 中国煤变质研究[J]. 地球科学: 中国地质大学学报, 1989,14(4): 341−345.

    Google Scholar

    [112] 杨起, 吴冲龙, 汤达祯, 等. 1996. 中国煤变质作用[J]. 地球科学: 中国地质大学学报, 21(3): 311−319.

    Google Scholar

    [113] 张旗, 钱青, 王二七, 等. 2001. 燕山中晚期的中国东部高原: 埃达克岩的启示[J]. 地质科学, 36(2): 248−255. doi: 10.3321/j.issn:0563-5020.2001.02.014

    CrossRef Google Scholar

    [114] 张旗, 王焰, 熊小林, 等. 2008. 埃达克岩和花岗岩: 挑战与机遇[M]. 北京: 中国大地出版社.

    Google Scholar

    [115] 张旗, 李承东. 2012a. 花岗岩: 地球动力学意义[M]. 北京: 海洋出版社.

    Google Scholar

    [116] 张旗, 翟明国. 2012b. 太古宙TTG岩石是什么含义?[J]. 岩石学报, 28(11): 3446−3456.

    Google Scholar

    [117] 张旗, 焦守涛, 李承东, 等. 2017. 花岗岩与大陆构造, 岩浆热场与成矿[J]. 岩石学报, 33(5): 1524−1540.

    Google Scholar

    [118] 张旗, 焦守涛. 2020. 埃达克岩来自高压背景——一个科学的, 可靠的, 有预见性的科学发现[J]. 岩石学报, 36(6): 1675−1683. doi: 10.18654/1000-0569/2020.06.02

    CrossRef Google Scholar

    [119] 张旗, 靳职斌, 解团结, 等. 2024. 山西省早白垩世下地壳地质图——来自山西省早白垩世花岗岩的证据[J/OL].地学前缘[2024-10-17], https://doi.org/10.13745/j.esf.sf.2024.10.19.

    Google Scholar

    [120] 张旗, 翟明国, 魏春景, 等. 2022. 一个新的花岗岩成因分类: 基于变质岩深熔作用理论与大数据的证据[J]. 地学前缘, 29(4): 319−329.

    Google Scholar

    [121] 张旗, 原杰, 焦守涛, 等. 2022. 花岗岩三级分类刍议[J]. 矿物岩石地球化学通报, 41(3): 200−210.

    Google Scholar

    [122] 郑建平, 夏冰, 戴宏坤, 等. 2021. 地球物理观察和岩石包体约束华北岩石圈地幔结构、性质及过程[J]. 中国科学: 地球科学, 51(02): 201−217.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Article Metrics

Article views(366) PDF downloads(106) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint