Citation: | WANG Qiong, YANG Jie, HUO Fengcai, DONG Hongli, REN Weijian, YU Tao. 2024. Lithology identification method of rock thin section images based on MobileViT. Geological Bulletin of China, 43(6): 938-946. doi: 10.12097/gbc.2022.10.002 |
The rock thin−section images contain a large amount of geological feature information that cannot be observed with the naked eye. The lithology identification of rock thin−section images lays the foundation for subsequent oil exploration and production. Aiming at the problems of unbalanced lithology identification data set and many identification model parameters, an improved lightweight MobileViT model is proposed to model and analyze the rock slice images covering more than 90% of common lithology. First, to enable the model to better learn the unique features contained in each type of rock slice image, adding numbers of the dataset set is performed on the image. Secondly, use GELU to replace the ReLU6 of the MV2 module in MobileViT as the activation function of the module, which effectively solves the problem of neuron death and improves the convergence speed of the model. Finally, the training set and the test set are divided, the cosine annealing algorithm is used to automatically update the learning rate, and the transfer learning is used to speed up the training process, so as to realize the automatic identification of rock slice images. The experimental results show that the accuracy of the improved MobileViT for lithology identification is 82.8%, and the model parameters are only 7.66M, which has good robustness.
[1] | Dosovitskiy A, Beyer L, Kolesnikov A, et al. 2020. An image is worth 16×16 Words: Transformers for image recognition at scale[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR). doi:10.48550/arXiv.2010.11929. |
[2] | Hendrycks D, Gimpel K. 2016. Bridging nonlinearities and stochastic regularizers with gaussian error linear Units[J]. abs, 1606.08415. |
[3] | He K, Zhang X, Ren S, et al. 2016. Deep Residual Learning for Image Recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR). doi:10.48550/arXiv.1512.03385. |
[4] | Hinton G. 2010. A practical guide to training restricted boltzmann machines[J]. Momentum, 9(1): 926−947. |
[5] | Loshchilov I, Hutter F. 2016. SGDR: Stochastic Gradient Descent with Warm Restarts[J]. CoRR, 2016, arXiv preprint arXiv: 1608.03983. |
[6] | Marmo R, Amodio S, Tagliaferri R, et al. 2005. Textural identification of carbonate rocks by image processing and neural network: Methodology proposal and examples[J]. Computers & geosciences, 31 (5): 649-659. |
[7] | Mehta S, Rastegari M. 2021. MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR). doi:10.48550/arXiv.2110.02178 . |
[8] | Pan S J, Qiang Y. 2010. A Survey on Transfer Learning[J]. IEEE Transactions on Knowledge and Data Engineering, 22(10): 1345-1359. |
[9] | Sandler M, Howard A, Zhu M, et al. 2018. Mobile NetV2: Inverted residuals and linear bottlenecks[C]//IEEE. Conference on Computer Vision and Pattern Recognition (CVPR). doi:10.48550/arXiv.1801.04381. |
[10] | Simonyan K, Zisserman A. 2014. Very deep convolutional networks for large-Scale image recognition[J]. Computer Science, arXiv preprint arXiv: 1409.1556. |
[11] | Singh N, Singh T N, Tiwary A, etal. 2010. Textural identification of basaltic rock mass using image processingand neural Network[J]. Computational Geosciences, 14: 301−310. doi: 10.1007/s10596-009-9154-x |
[12] | 陈国军, 姜朕, 尹冲, 等. 2023. 基于深度学习的岩石孔隙分割方法[J]. 计算机与数字工程, 51(5): 1157−1162. doi: 10.3969/j.issn.1672-9722.2023.05.032 |
[13] | 盖荣丽, 蔡建荣, 王诗宇, 等. 2021. 卷积神经网络在图像识别中的应用研究综述[J]. 小型微型计算机系统, 42(9): 1980−1984. doi: 10.3969/j.issn.1000-1220.2021.09.030 |
[14] | 付光明, 严加永, 张昆, 等. 2017. 岩性识别技术现状与进展[J]. 地球物理学进展, 32(1): 26−40. doi: 10.6038/pg20170104 |
[15] | 宫清顺, 黄革萍, 孟祥超, 等. 2012. 三塘湖盆地火山岩岩性识别方法[J]. 中国石油勘探, 17(3): 37−41, 6. doi: 10.3969/j.issn.1672-7703.2012.03.006 |
[16] | 李嘉璇. 2017. TensorFlow技术解析与实战[M]. 人民邮电出版社: 314. |
[17] | 刘强, 滕奇志, 何海波. 2022. 岩石薄片多聚焦图像融合的深度学习算法研究[J]. 电子测量技术, 45(3): 125−130. |
[18] | 赖文, 蒋璟鑫, 邱检生, 等. 2020. 南京大学岩石教学薄片显微图像数据集[J]. 中国科学数据(中英文网络版), 5(3): 26−38. |
[19] | 马泽栋, 马雷, 李科, 等. 2022. 基于岩石图像深度学习的多尺度岩性识别[J]. 地质科技通报, 41(6): 316−322. |
[20] | 熊越晗, 刘东燕, 刘东升, 等. 2021. 基于岩样细观图像深度学习的岩性自动分类方法[J]. 吉林大学学报(地球科学版), 51(5): 1597−1604. |
[21] | 徐述腾, 周永章. 2018. 基于深度学习的镜下矿石矿物的智能识别实验研究[J]. 岩石学报, 34(11): 3244−3252. |
[22] | 许振浩, 马文, 林鹏, 等. 2021. 基于岩石图像迁移学习的岩性智能识别[J]. 应用基础与工程科学学报, 29(5): 1075−1092. |
[23] | 张珂, 冯晓晗, 郭玉荣, 等. 2021. 图像分类的深度卷积神经网络模型综述[J]. 中国图象图形学报, 26(10): 2305−2325. doi: 10.11834/jig.200302 |
[24] | 张野, 李明超, 韩帅. 2018. 基于岩石图像深度学习的岩性自动识别与分类方法[J]. 岩石学报, 34(2): 333−342. |
[25] | 周永章, 陈烁, 张旗, 等. 2018. 大数据与数学地球科学研究进展——大数据与数学地球科学专题代序[J]. 岩石学报, 34(2): 255−263. |
[26] | 周永章, 左仁广, 刘刚, 等. 2021. 数学地球科学跨越发展的十年: 大数据、人工智能算法正在改变地质学[J]. 矿物岩石地球化学通报, 40(3): 556−573, 777. |
[27] | 周志华. 2016. 机器学习[M]. 北京: 清华大学出版社. |
Technical route
MobileViT feature extraction process
Image of ReLU6 function
Image of GELU function
Saddle face and saddle point
Learning rate for Cosine Annealing Algorithm
Image expansion
Accuracy plots for the training process
Comparison between validation and data set images