2024 Vol. 43, No. 7
Article Contents

LI Lei, LU Caiwu, JIANG Song, JING Wengang, WANG Luofeng. 2024. Intelligent mineral image recognition based on improved ConvNeXt network. Geological Bulletin of China, 43(7): 1266-1275. doi: 10.12097/gbc.2022.08.005
Citation: LI Lei, LU Caiwu, JIANG Song, JING Wengang, WANG Luofeng. 2024. Intelligent mineral image recognition based on improved ConvNeXt network. Geological Bulletin of China, 43(7): 1266-1275. doi: 10.12097/gbc.2022.08.005

Intelligent mineral image recognition based on improved ConvNeXt network

More Information
  • Mineral identification is a critical task in geological research, yet accurately identifying minerals remains a significant challenge. This study proposes an intelligent mineral image recognition model based on an improved ConvNeXt network, which utilizes transfer learning strategies and incorporates channel attention mechanisms to address the morphological characteristics of minerals.Firstly, the ConvNeXt network model pre-trained on the ImageNet dataset is employed and integrated into the mineral recognition model through transfer learning. Secondly, based on the ConvNeXt network, the model enhances feature fusion capabilities by combining the ConvNeXt blocks with attention mechanisms. Finally, a dataset comprising 34576 ore images of 26 mineral categories is used, divided into training, validation, and test sets in a 6∶2∶2 ratio. During experimental training, the proposed model demonstrates a significantly faster convergence compared to VGG19, GoogLeNet, ResNet50, ResNeXt50, and the ConvNeXt networks.Experimental results indicate that the intelligent mineral recognition model achieves an accuracy, precision, and recall of 98.58%, 98.62%, and 98.73%, respectively. Ablation experiments confirm that the optimization methods proposed in this study enhance model performance. Additionally, comparative visual analysis of feature maps from different models substantiates that the proposed mineral recognition model accurately extracts mineral features, further validating the model's effectiveness and improving mineral identification accuracy.

  • 加载中
  • [1] Baykan N A, Yılmaz N. 2010. Mineral identification using color spaces and artificial neural networks[J]. Computers & Geosciences, 36(1): 91−97.

    Google Scholar

    [2] El Haddad J, de Lima Filho E S, Vanier F, et al. 2019. Multiphase mineral identification and quantification by laser−induced breakdown spectroscopy[J]. Minerals Engineering, 134: 281−290. doi: 10.1016/j.mineng.2019.02.025

    CrossRef Google Scholar

    [3] Hu J, Shen L, Sun G. 2018. Squeeze−and−excitation networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition: 7132−7141.

    Google Scholar

    [4] Izadi H, Sadri J, Mehran N A. 2013. Intelligent mineral identification using clustering and artificial neural networks techniques[C]//First Iranian Conference on Pattern Recognition and Image Analysis (PRIA). IEEE, 2013: 1−5.

    Google Scholar

    [5] Khajehzadeh N, Haavisto O, Koresaar L. 2016. On−stream and quantitative mineral identification of tailing slurries using LIBS technique[J]. Minerals Engineering, 98: 101−109.

    Google Scholar

    [6] Li X, Wang W, Hu X, et al. 2019. Selective kernel networks[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition: 510−519.

    Google Scholar

    [7] Liu C, Li M, Zhang Y, et al. 2019. An enhanced rock mineral recognition method integrating a deep learning model and clustering algorithm[J]. Minerals, 9(9): 516. doi: 10.3390/min9090516

    CrossRef Google Scholar

    [8] Liu Y, Zhang Z, Liu X, et al. 2021. Ore image classification based on small deep learning model: Evaluation and optimization of model depth, model structure and data size[J]. Minerals Engineering, 172: 107020. doi: 10.1016/j.mineng.2021.107020

    CrossRef Google Scholar

    [9] Liu Z, Mao H, Wu C Y, et al. 2022. A convnet for the 2020s[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition: 11976−11986.

    Google Scholar

    [10] Maitre J, Bouchard K, Bédard L P. 2019. Mineral grains recognition using computer vision and machine learning[J]. Computers & Geosciences, 130: 84−93.

    Google Scholar

    [11] Selvaraju R R, Cogswell M, Das A, et al. 2017. Grad−cam: Visual explanations from deep networks via gradient−based localization[C]//Proceedings of the IEEE international conference on computer vision: 618−626.

    Google Scholar

    [12] Tsuji T, Yamaguchi H, Ishii T, et al. 2010. Mineral classification from quantitative X−ray maps using neural network: Application to volcanic rocks[J]. Island Arc, 19(1): 105−119. doi: 10.1111/j.1440-1738.2009.00682.x

    CrossRef Google Scholar

    [13] Trejbal J, Valentová T, Neerka V, et al. 2020. Mechanical and image analysis of adhesion between mineral aggregate and bituminous binder[J]. Acta Polytechnica CTU Proceedings, 26: 112−116.

    Google Scholar

    [14] Wang Q, Wu B, Zhu P, et al. 2020. ECA−Net: Efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition: 11534−11542.

    Google Scholar

    [15] Woo S, Park J, Lee J Y, et al. 2018. Cbam: Convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision (ECCV): 3−19.

    Google Scholar

    [16] Zamir A R, Sax A, Shen W, et al. 2018. Taskonomy: Disentangling task transfer learning[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition: 3712−3722.

    Google Scholar

    [17] Zhou W, Wang H, Wan Z. 2022. Ore image classification based on improved CNN[J]. Computers & Electrical Engineering, 99: 107819.

    Google Scholar

    [18] 郭艳军, 周哲, 林贺洵, 等. 2020. 基于深度学习的智能矿物识别方法研究[J]. 地学前缘, 27(5): 39−47.

    Google Scholar

    [19] 郝慧珍, 顾庆, 胡修棉. 2021. 基于机器学习的矿物智能识别方法研究进展与展望[J]. 地球科学, 46(9): 16.

    Google Scholar

    [20] 李明超, 刘承照, 张野. 2020. 耦合颜色和纹理特征的矿物图像数据深度学习模型与智能识别方法[J]. 大地构造与成矿学, 44(2): 203−11.

    Google Scholar

    [21] 刘艳鹏, 朱立新, 周永章. 2020. 大数据挖掘与智能预测找矿靶区实验研究——卷积神经网络模型的应用[J]. 大地构造与成矿学, 44(2): 192−202.

    Google Scholar

    [22] 彭伟航, 白林, 商世为. 2019. 基于改进InceptionV3模型的常见矿物智能识别[J]. 地质通报, 38(12): 2059−66.

    Google Scholar

    [23] 王李管, 陈斯佳, 贾明滔, 等. 2020. 基于深度学习的黑钨矿图像识别选矿方法[J]. 中国有色金属学报, 30(5): 1192−1201.

    Google Scholar

    [24] 许振浩, 马文, 林鹏, 等. 2021. 基于岩石图像迁移学习的岩性智能识别[J]. 应用基础与工程科学学报, 29(5): 1075−1092.

    Google Scholar

    [25] 徐述腾, 周永章. 2018. 基于深度学习的镜下矿石矿物的智能识别实验研究[J]. 岩石学报, 34(11): 3244−3252.

    Google Scholar

    [26] 赵明. 2010. 矿物学导论[M]. 北京: 地质出版社.

    Google Scholar

    [27] 张旭, 于明鑫, 祝连庆, 等. 2020. 基于全光衍射深度神经网络的矿物拉曼光谱识别方法[J]. 红外与激光工程, 49(10): 168−175.

    Google Scholar

    [28] 周永章, 张良均, 张傲多, 等. 2018. 地球科学大数据挖掘与机器学习[M]. 广州: 中山大学出版社: 1−269.

    Google Scholar

    [29] 周永章, 左仁广, 刘刚, 等. 2021. 数学地球科学跨越发展的十年: 大数据、人工智能算法正在改变地质学[J]. 矿物岩石地球化学通报, 40(3): 556−573, 777.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(5)

Article Metrics

Article views(817) PDF downloads(83) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint