2025 Vol. 44, No. 5
Article Contents

DAI Shixin, DONG Yanjiao, HU Pan, LI Xiang, XING Zhenhan, YANG Fu. 2025. Seismic physical model of small fault in southern coal-bearing strata. Geological Bulletin of China, 44(5): 858-871. doi: 10.12097/gbc.2022.06.031
Citation: DAI Shixin, DONG Yanjiao, HU Pan, LI Xiang, XING Zhenhan, YANG Fu. 2025. Seismic physical model of small fault in southern coal-bearing strata. Geological Bulletin of China, 44(5): 858-871. doi: 10.12097/gbc.2022.06.031

Seismic physical model of small fault in southern coal-bearing strata

More Information
  • Objective

    Given the lithological characteristics and geological structure distribution of coal−bearing strata in southern coalfields, traditional methods face significant limitations and challenges in identifying small faults with a displacement of ≤5 m. Seismic physical modeling is currently the most promising technique for systematically studying small faults.

    Methods

    Taking the southern coalfield—Liupanshui Coalfield in Guizhou Province, as an example, a seismic physical model was designed based on field exploration and data collection. Due to the complexity and specificity of constructing small faults, a unique spatial scale ratio of 1∶2000 and a velocity ratio of 1∶1.74 were adopted. For the first time in China, small faults at different burial depths of 5 m, 3 m, and 1 m were successfully simulated, leading to the completion of a seismic physical model of small faults in coal−bearing strata. Seismic data were then acquired, and the raw seismic data from the model were analyzed and processed to obtain the stacked seismic profile.

    Results

    By applying similarity principles and selecting specific scaling factors, raw materials were proportioned to successfully construct a seismic physical model incorporating small faults with a displacement of ≤5 m. This model provides an experimental platform for acquiring seismic data, identifying small faults in coalfields, and studying their wavefield characteristics.

    Conclusions

    This study establishes a seismic physical modeling system suitable for identifying small faults in southern coalfields, demonstrating the feasibility of constructing fault models based on the similarity principle. The developed model overcomes the technical limitations of conventional methods in detecting small faults, and offers a reliable experimental foundation for investigating wavefield responses and seismic recognition mechanisms. It provides theoretical support for the refined interpretation of geological structures in southern coal-bearing stratas.

  • 加载中
  • [1] Balch A H, Karazincir H, Wang Y R. 1991. Diffraction imaging of oil−producing layers using crosswell seismic: A physical elastic model study[J]. Proceedings of the 61st Annual Meeting of the Society of Exploration Geophysicists. Colorado School of Mines: 268−272 (in Chinese).

    Google Scholar

    [2] Blacquière G, Volker A, Ongkiehong L. 1999. 3−D physical modeling for acquisition geometry studies[C]//SEG Technical Program Expanded Abstracts. Society of Exploration Geophysicists: 665−668.

    Google Scholar

    [3] Dai S X, Hu P, Dong Y J, et al. 2022. Patterns of small fault with different placing depth in typical coal fields in southern China[J]. Journal of Mining Science and Technology, 7(1): 123−133 (in Chinese with English abstract).

    Google Scholar

    [4] Dai S X, Zhu G W, Zhang P, et al. 2011. Study on seismic physical model and seismic numerical model for deep coal measure strata[J]. China Mining Magazine, 20(8): 115−118 (in Chinese with English abstract).

    Google Scholar

    [5] Dai S X, Zhu G W, Zhang P, et al. 2012. Technology of disturbing wave filtering in seismic model and its application[J]. Journal of Mining and Strata Control Engineering, 17(1): 21−25, 29 (in Chinese with English abstract).

    Google Scholar

    [6] Di B R, Wei J X, Xia Y G. 2002. Study on effects and precision of 3−D seismic physical model technique[J]. Oil Geophysical Prospecting, 37(6): 562−568 (in Chinese with English abstract).

    Google Scholar

    [7] Lawton D C, Nazar Brad, Chen Taiwen, et al. 1991. Thin−Bedded channel sandstone: A physical seismic modeling study[C]//Proceedings of the 61st Annual Meeting of the Society of Exploration Geophysicists. Univ. of Calgary: 264−268 (in Chinese).

    Google Scholar

    [8] Gui W C. 2011. Wire−line coring drilling drill tool combination for "South" Coalfields[J]. Coal Geology of China, 23(2): 64−67 (in Chinese with English abstract).

    Google Scholar

    [9] Han T H, Dai S X, Li X H, et al. 2011. Seismic physical modeling research on coal measure strata in Huainan[J]. Journal of China Coal Society, 36(4): 588−592 (in Chinese with English abstract).

    Google Scholar

    [10] House L, Roberts P, Yang X, et al. 1999. Imaging and modeling seismic data from a physical model of the SEG/EAGE salt structure[C]//SEG Technical Program Expanded Abstracts. Society of Exploration Geophysicists: 1017−1020.

    Google Scholar

    [11] Li Y, Zhou Y B, Fu Z Y, et al. 2017. Wave−field characteristic of geophysical model experiment[J]. Mineralogy and Petrology, 37(3): 107−112 (in Chinese with English abstract).

    Google Scholar

    [12] McDonald J A, Gardner G H F, Hilterman F J (Xu D K (translator)). 1988. Seismic physical modeling [M]. Beijing: Petroleum Industry Press (in Chinese).

    Google Scholar

    [13] Mou Y G. 2003. Seismic physical modeling of 3D complex media [M]. Beijing: Petroleum Industry Press (in Chinese).

    Google Scholar

    [14] Schneider W A, Jr, Balch A H, Yu F Y. 1991. Seismic crosswell imaging of 2D and 3D physical elastic models using prestack reverse time migration[C]// Proceedings of the 61st Annual Meeting of the Society of Exploration Geophysicists. Exxon Production Research. Colorado School of Mines: 256−260 (in Chinese).

    Google Scholar

    [15] Si W M, Di B R, Wei J X. 2015. Analysis of multiple−converted interference wave in seismic physical modeling data[J]. Geophysical Prospecting for Petroleum, 54(1): 17−23 (in Chinese with English abstract).

    Google Scholar

    [16] Sun J Z, Guo T Q, Tang W B, et al. 1997. Theoretical research and practice of ultrasonic seismic model experiments in China[J]. Chinese Journal of Geophysics, (S1): 266−274 (in Chinese).

    Google Scholar

    [17] Tang H F, Wang P J, Jiang C J, et al. 2007. Physical model and seismic recognition of concealed volcanic edifices of Yingcheng Formation in Songliao Basin, Cretaceous, NE China[J]. Progress in Geophysics, (2): 530−536 (in Chinese with English abstract).

    Google Scholar

    [18] Wang L L, Wei J X, Huang P, et al. 2019. Fracture−sensitive poststack seismic attribute optimization based on the physical model[J]. Oil Geophysical Prospecting, 54(1): 127−136, 9−10 (in Chinese with English abstract).

    Google Scholar

    [19] Wei J X, Di B R. 2006. Properties of materials forming the 3−D geological model in seismic physical model[J]. Geophysical Prospecting for Petroleum, 45(6): 586−590, 15−16 (in Chinese with English abstract).

    Google Scholar

    [20] Wei J X, Di B R, Mou Y G. 2002. Research on materials and construction of 3D complex physical model [C]//Annual of the Chinese Geophysical Society 2002—Proceedings of the 18th Annual Meeting of the Chinese Geophysical Society. China University of Petroleum: 252−253 (in Chinese).

    Google Scholar

    [21] Wei J X, Mou Y G, Di B R. 2002. Study of 3−D seismic physical model[J]. Oil Geophysical Prospecting, (6): 556−561, 660 (in Chinese with English abstract).

    Google Scholar

    [22] Wu Y H, Tao X Y, Zhao Z Y, et al. 2025. Discovery and significant implication of the strike−slip faults in Kaijiang−Liangping trough of the Sichuan Basin[J]. Geological Bulletin of China, 44(1): 117−128 (in Chinese with English abstract).

    Google Scholar

    [23] Yang K Y. 1997. New Discoveries on acoustic wave propagation velocity[J]. Modern Physics, (2): 26 (in Chinese).

    Google Scholar

    [24] Yang R Q, Tang X G. 2014. Coal−bearing strata characteristic analysis in Lupanshui coalfield, Guizhou Province[J]. Coal Geology of China, 26(7): 28−32 (in Chinese with English abstract).

    Google Scholar

    [25] Yang S A, Zhang Y B, Xu H Y. 2004. The application and development trend of the three−dimensional seismic exploration technology in the coalfield[J]. Geophysical and Geochemical Exploration, (6): 500−503 (in Chinese with English abstract).

    Google Scholar

    [26] Yi T S, Gao W. 2018. Reservoir formation characteristics as well as co−exploration and co−mining orientation of Upper Permian coal−bearing gas in Liupanshui Coalfield[J]. Journal of China Coal Society, 43(6): 1553−1564 (in Chinese with English abstract).

    Google Scholar

    [27] Zhou S, Wang Y L, Han T B, et al. 2012. Minor fault joint−interpretation[J]. Oil Geophysical Prospecting, 47(S1): 50−54, 165−166, 162 (in Chinese with English abstract).

    Google Scholar

    [28] Zhuang Y M. 2018. Study on the fine interpretation method of seismic multiattribute of small fault in coal seam[D]. Doctoral Dissertation of China University of Mining and Technology (in Chinese with English abstract).

    Google Scholar

    [29] Balch A H, Karazincir H, 王友仁. 1991. 利用井间地震对产油层绕射成象: 物理弹性模型研究[C]//美国勘探地球物理学家学会第61届年会论文集. Colorado School of Mines: 268−272.

    Google Scholar

    [30] McDonald J A, Gardner G H F, Hilterman F J(许大坤译). 1988. 地震物理模拟[M]. 北京: 石油工业出版社.

    Google Scholar

    [31] Schneider W A, Jr Balch A H, 于锋玉. 1991. 用叠前逆时偏移做二维和三维物理弹性模型的地震井间成象[C]//美国勘探地球物理学家学会第61届年会论文集. Exxon Production Research. Colorado School of Mines: 256−260.

    Google Scholar

    [32] Lawton D C, Nazar B, Chen T W, 等. 1991. 薄层河道砂岩: 一项物理地震模拟研究[C]//美国勘探地球物理学家学会第61届年会论文集. Univ. of Calgary: 264−268.

    Google Scholar

    [33] 戴世鑫, 胡盼, 董艳娇, 等. 2022. 南方典型煤田不同埋深小断层识别规律研究[J]. 矿业科学学报, 7(1): 123−133.

    Google Scholar

    [34] 戴世鑫, 朱国维, 张鹏, 等. 2011. 深部煤系地质条件地震物理与数值模型研究[J]. 中国矿业, 20(8): 115−118. doi: 10.3969/j.issn.1004-4051.2011.08.033

    CrossRef Google Scholar

    [35] 戴世鑫, 朱国维, 张鹏, 等. 2012. 地震模型干扰波去除技术的研究与应用[J]. 煤矿开采, 17(1): 21−25, 29. doi: 10.3969/j.issn.1006-6225.2012.01.007

    CrossRef Google Scholar

    [36] 狄帮让, 魏建新, 夏永革. 2002. 三维地震物理模型技术的效果与精度研究[J]. 石油地球物理勘探, 37(6): 562−568. doi: 10.3321/j.issn:1000-7210.2002.06.003

    CrossRef Google Scholar

    [37] 桂望成. 2011. 南方煤田绳索取心钻进的配套问题[J]. 中国煤炭地质, 23(2): 64−67. doi: 10.3969/j.issn.1674-1803.2011.02.13

    CrossRef Google Scholar

    [38] 韩堂惠, 戴世鑫, 李小华, 等. 2011. 淮南煤系地层地震物理模型研究[J]. 煤炭学报, 36(4): 588−592.

    Google Scholar

    [39] 李勇, 周钰邦, 付争妍, 等. 2017. 基于地球物理模型实验的波场特征[J]. 矿物岩石, 37(3): 107−112.

    Google Scholar

    [40] 牟永光. 2003. 三维复杂介质地震物理模拟[M]. 北京: 石油工业出版社.

    Google Scholar

    [41] 司文朋, 狄帮让, 魏建新. 2015. 地震物理模型实验数据中多次转换干扰波的分析[J]. 石油物探, 54(1): 17−23. doi: 10.3969/j.issn.1000-1441.2015.01.003

    CrossRef Google Scholar

    [42] 孙进忠, 郭铁栓, 唐文榜, 等. 1997. 我国超声地震模型试验的理论研究与实践[J]. 地球物理学报, (S1): 266−274. doi: 10.3321/j.issn:0001-5733.1997.z1.024

    CrossRef Google Scholar

    [43] 唐华风, 王璞珺, 姜传金, 等. 2007. 松辽盆地白垩系营城组隐伏火山机构物理模型和地震识别[J]. 地球物理学进展, (2): 530−536. doi: 10.3969/j.issn.1004-2903.2007.02.027

    CrossRef Google Scholar

    [44] 王玲玲, 魏建新, 黄平, 等. 2019. 依托物理模型的叠后裂缝敏感地震属性优选与应用[J]. 石油地球物理勘探, 54(1): 127−136, 9−10. doi: 10.13810/j.cnki.issn.1000-7210.2019.01.015

    CrossRef Google Scholar

    [45] 魏建新, 狄帮让. 2006. 地震物理模型中三维地质模型材料特性研究[J]. 石油物探, 45(6): 586−590. doi: 10.3969/j.issn.1000-1441.2006.06.006

    CrossRef Google Scholar

    [46] 魏建新, 狄帮让, 牟永光. 2002a. 三维复杂物理模型材料和制作研究[C]//中国地球物理学会年刊2002——中国地球物理学会第十八届年会论文集. 石油大学: 252−253.

    Google Scholar

    [47] 魏建新, 牟永光, 狄帮让. 2002b. 三维地震物理模型的研究[J]. 石油地球物理勘探, (6): 556−561, 660. doi: 10.3321/j.issn:1000-7210.2002.06.002

    CrossRef Google Scholar

    [48] 吴永宏, 陶夏妍, 赵忠宇, 等. 2025. 四川盆地开江-梁平海槽走滑断层的发现与启示[J]. 地质通报, 44(1): 117−128. doi: 10.12097/gbc.2023.05.011

    CrossRef Google Scholar

    [49] 杨揆一. 1997. 关于声波传递速度的新发现[J]. 现代物理知识, (2): 26.

    Google Scholar

    [50] 杨瑞琴, 唐显贵. 2014. 贵州省六盘水煤田含煤地层特征分析[J]. 中国煤炭地质, 26(7): 28−32. doi: 10.3969/j.issn.1674-1803.2014.07.07

    CrossRef Google Scholar

    [51] 杨双安, 张胤彬, 许鸿雁. 2004. 煤田三维地震勘探技术的应用及发展前景[J]. 物探与化探, (6): 500−503.

    Google Scholar

    [52] 易同生, 高为. 2018. 六盘水煤田上二叠统煤系气成藏特征及共探共采方向[J]. 煤炭学报, 43(6): 1553−1564.

    Google Scholar

    [53] 中华人民共和国国土资源部. 2017. 中华人民共和国地质矿业行业标准地震勘探规范(DZ/T0300—2017)[S]. 北京: 地质出版社.

    Google Scholar

    [54] 周赏, 王永莉, 韩天宝, 等. 2012. 小断层综合解释技术及其应用[J]. 石油地球物理勘探, 47(S1): 50−54, 165−166, 162.

    Google Scholar

    [55] 庄益明. 2018. 煤层小断层地震多属性精细解释方法研究[D]. 中国矿业大学博士学位论文.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(14)

Tables(5)

Article Metrics

Article views(233) PDF downloads(28) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint