2025 Vol. 44, No. 1
Article Contents

LI Zhuang, ZHOU Xun, FANG Bin, SHEN Ye, XU Yanqiu, CHEN Binghua, TA Mingming, SUI Liai. 2025. Chemical characteristics and evolutionary mechanism of hot spring water in Dabie Mountain area, Anhui Province. Geological Bulletin of China, 44(1): 158-172. doi: 10.12097/gbc.2022.06.012
Citation: LI Zhuang, ZHOU Xun, FANG Bin, SHEN Ye, XU Yanqiu, CHEN Binghua, TA Mingming, SUI Liai. 2025. Chemical characteristics and evolutionary mechanism of hot spring water in Dabie Mountain area, Anhui Province. Geological Bulletin of China, 44(1): 158-172. doi: 10.12097/gbc.2022.06.012

Chemical characteristics and evolutionary mechanism of hot spring water in Dabie Mountain area, Anhui Province

More Information
  • Objective

    The analysis and summary of the hydrochemical characteristics and evolution mechanism of the tectonically controlled hot springs in Dabie Mountain area, Anhui Province, is conducive to deepen the understanding of water−rock interaction under the unique geological background (orogenic silicic rocks), and can provide scientific basis for geothermal exploration and rational development and utilization in Dabie Mountain area.

    Methods

    Based on the analysis of the basic characteristics of the chemical components of the hot spring in the study area, the water−rock interaction of the hot spring in the study area is studied by comprehensive use of Gibbs map, rock weathering map, ion ratio coefficient and mineral stability field map. In addition, the reverse hydrogeochemical simulation work was carried out with the help of PHREEQC software to quantitatively analyze the dissolution and precipitation of major minerals during the geothermal water cycle.

    Results

    ① The hydrochemical types of the five hot springs in Dabie Mountain are mainly SO4−Na and SO4·HCO3−Na, all of which are moderate−low temperature and weak alkaline hot springs; ② Eu values in hot springs in the study area show obvious positive anomalies, with light rare earth elements relatively abundant, medium rare earth elements second, and heavy rare earth elements relatively lacking; ③ The chemical composition of hot spring water in the study area is mainly affected by rock weathering. Na+ mainly comes from the leaching of silicate rocks (such as albite and sodium montmorillonite), and Ca2+ comes from the leaching of carbonate rocks and gypsum. The content of SO42− is mainly affected by the dissolution of gypsum. The content of HCO3 is mainly affected by the dissolution of silicate rocks and carbonate rocks. ④ The water−rock interaction on the path of rainwater−deep circulation underground hot water is the dissolution of albite, anorthite, fluorite, gypsum, biotite , and CO2, and the precipitation of sodium montmorillonite, calcite , and dolomite, and the cation alternating adsorption of Ca2+ replacing Na+ occurs.

    Conclusions

    The path from rainwater to underground hot water belongs to the groundwater depth cycle. The complex lithology and structure of deep strata easily hinder groundwater runoff, slowing down groundwater velocity, and thus promote sufficient water−rock interaction in groundwater, completing the transformation of HCO3−Ca rainwater into SO4·HCO3−Na and SO4−Na weakly alkaline hot springs.

  • 加载中
  • [1] Anhui Geological Survey. 2006. 1∶250, 000 Regional Geological Survey of Taihu Formation, Anhui Province [M]. Beijing: Geological Press(in Chinese).

    Google Scholar

    [2] Auqué L F, Acero P, Gimeno M J, et al. 2009. Hydrogeochemical modeling of a thermal system and lessons learned for CO2 geologic storage[J]. Chemical Geology, 268(3/4): 324−336.

    Google Scholar

    [3] Bretzler A, Osenbruck K, Gloaguen R, et al. 2011. Groundwater origin and flow dynamics in active rift systems − A multi−isotope approach in the Main Ethiopian Rift[J]. Journal of Hydrology Amsterdam, 402(3/4): 274−289.

    Google Scholar

    [4] Cherdyntsev V V. 1971. Uranium−234[M]. Jerusalem: Keter Press.

    Google Scholar

    [5] Cheng C G, Yang L B. 2005. Preliminary Study on Distribution Characteristics and Development and Utilization of Geothermal Water Resources in Anqing City[J]. Geology of Anhui, 15(3): 186−189(in Chinese with English abstract).

    Google Scholar

    [6] China Geological Survey. 2012. Handbook of Hydrogeology[M]. Beijing: Geological Press(in Chinese).

    Google Scholar

    [7] Craig H. 1953. The geochemistry of the stable carbon isotopes[J]. Geochimica et Cosmochimica Acta, 3(2): 53−92.

    Google Scholar

    [8] Diao T R, Du F. 2019. Genesis model of geothermal resources and evaluation of geothermal resources in Yuexi County, Anhui Province[J]. Groundwater, 41(6): 27−28,31(in Chinese with English abstract).

    Google Scholar

    [9] Fisher R S, Mullican I W F. 1997. Hydrochemical evolution of sodium−sulfate and sodium−chloride groundwater beneath the northern Chihuahuan Desert, Trans−Pecos, Texas, USA[J]. Hydrogeology Journal, 5(2): 4−16. doi: 10.1007/s100400050102

    CrossRef Google Scholar

    [10] Gaillardet J, Dupre B, Louva P, et al. 1999. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers[J]. Chemical Geology, 159(1/4): 3−30. doi: 10.1016/S0009-2541(99)00031-5

    CrossRef Google Scholar

    [11] Gastmans D, Hutcheon I, Menegário A A, et al. 2016. Geochemical evolution of groundwater in a basaltic aquifer based on chemical and stable isotopic data: Case study from the Northeastern portion of Serra Geral Aquifer, São Paulo state (Brazil)(Article)[J]. Journal of Hydrology, 535(0): 598−611.

    Google Scholar

    [12] Gibbs R J. 1970. Mechanisms controlling world water chemistry[J]. Science, 170(3962): 1088−1090. doi: 10.1126/science.170.3962.1088

    CrossRef Google Scholar

    [13] Guo Y H, Shen Z L, Zhong Z S. 2002. Hydrogeochemical modeling for the formation of deep−lying alkaline fresh groundwater in Heibei Plain: A case study in Baoding and Cangzhou Districts[J]. Earth Science, 27(2): 35−40(in Chinese with English abstract).

    Google Scholar

    [14] Haskin L A, Haskin M A, Frey F A, et al. 1968. Relative and Absolute Terrestrial Abundances of the Rare Earths[M]. London: Pergamon Press.

    Google Scholar

    [15] Helgeson H C. 1969. Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions-II. Applications[J]. Geochimica et Cosmochimica Acta, 32(8): 853-877.

    Google Scholar

    [16] Hershey R L, Mizell S A, Earman S. 2010. Chemical and physical characteristics of springs discharging from regional flow systems of the carbonate−rock province of the Great Basin, western United States[J]. Hydrogeology Journal, 18(4): 1007−1026. doi: 10.1007/s10040-009-0571-7

    CrossRef Google Scholar

    [17] Hidalgo M C, Cruz−Sanjulian J. 2001. Groundwater composition, hydrochemical evolution and mass transfer in a regional detrital aquifer (Baza basin, southern Spain)[J]. Applied Geochemistry, 16(7): 745−758.

    Google Scholar

    [18] Li Z, Zhou X, Fan B, et al. 2022. Hydrochemical and isotopic characteristics and formation of the hot spring in the Dabie Mountain area, Anhui Province[J]. Geological Bulletin of China, 41(9): 1687−1697(in Chinese with English abstract).

    Google Scholar

    [19] Lin W J, Liu Z M, Wang W L, et al. 2013. The assessment of geothermal resources potential of China[J] Geology in China, 40(1): 312−321(in Chinese with English abstract).

    Google Scholar

    [20] Liu H Y. 2018. Distribution of groundwater rare earth elements in the typical region of the North China Plain and modeling study on their complexation with iron and manganese[D]. Doctoral Thesis of China University of Geoscience (Beijing) (in Chinese with English abstract).

    Google Scholar

    [21] Liu C L, Li Y S, Hong B Y, et al. 2023. Geochemical characteristics and formation mechanisms of the seawater−recharged geothermal systems in Yantian of Fujian, China[J]. Hydrogeology & Engineering Geology, 50(1): 158−167(in Chinese with English abstract).

    Google Scholar

    [22] Michard G, Roekens E. 1983. Modeling of the chemical composition of alkaline hot waters[J]. Geothermics, 12(12/13): 161−169.

    Google Scholar

    [23] Nesbitt H W, Young G M. 1984. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations[J]. Geochimica et Cosmochimica Acta, 48(7): 1523−1534. doi: 10.1016/0016-7037(84)90408-3

    CrossRef Google Scholar

    [24] Palandri J L, Reed M. 2001. Reconstruction of in situ composition of sedimentary formation waters[J]. Geochimica et Cosmochimica Acta, 65(11): 1741−1767. doi: 10.1016/S0016-7037(01)00555-5

    CrossRef Google Scholar

    [25] Parkhurst D, Appelo C. 1999. User's guide to PHREEQC (Version 2)−A Computer Program for Speciation, Batch−reaction, One−dimensional Transport and Geochemical Calculations[M]. U. S: Geological Survey Water Resour Invest Rep, 99−4259.

    Google Scholar

    [26] Qi H, Ma Z Y, Li Pei Y, et al. 2012. Hydrogeochemical[M]. Beijing: Geology Press(in Chinese).

    Google Scholar

    [27] Rajmohan N, Elango L. 2004. Identification and evolution of hydrogeochemical processes in the groundwater environment in an area of the Palar and Cheyyar River Basins, Southern India[J]. Environmental Geology, 46(1): 47−61.

    Google Scholar

    [28] Reed M, Spycher N. 1984. Calculation of pH and mineral equilibria in hydrothermal waters with application to geothermometry and studies of boiling and dilution[J]. Geochimica et Cosmochimica Acta, 48(7): 1479−1492. doi: 10.1016/0016-7037(84)90404-6

    CrossRef Google Scholar

    [29] Rosenthal E, Jones B F, Weinberger G. 1998. The chemical evolution of Kurnub Group paleowater in the Sinai−Negev province—A mass balance approach[J]. Applied Geochemistry, 13(5): 553−569. doi: 10.1016/S0883-2927(97)00092-9

    CrossRef Google Scholar

    [30] Reddy A G S, Kumar K N. 2010. Identification of the hydrogeochemical processes in groundwater using major ion chemistry: A case study of Penna−Chitravathi river basins in Southern India[J]. Environmental Monitoring and Assessment, 170(1/4): 365−382.

    Google Scholar

    [31] Rogers R J. 2010. Geochemical comparison of ground water in areas of New England, New York, and Pennsylvania[J]. Ground Water, 27(5): 690−712.

    Google Scholar

    [32] Sakai T, Yamaguchi A, Metz P. 2003. Thermal−hydraulic analysis for a sodium−heated steam generator using a multi−shell method[J]. Nuclear Engineering and Design, 219(1): 35−46. doi: 10.1016/S0029-5493(02)00212-1

    CrossRef Google Scholar

    [33] Sanliyuksel D, Baba R. 2011. Hydrogeochemical and isotopic composition of a low−temperature geothermal source in northwest Turkey: Case study of Kirkgecit geothermal area[J]. Environmental Earth Sciences, 62(3): 529−540. doi: 10.1007/s12665-010-0545-z

    CrossRef Google Scholar

    [34] Schoeller H. 1965. Hydrodynamique lans lekarst (ecoulemented emmagusinement)[J]. Actes Colloques Doubronik, 1(0): 3−20.

    Google Scholar

    [35] Stallard R F, Edmond J M. 1983. Geochemistry of the Amazon: 2. The influence of geology and weathering environment on the dissolved load[J]. Journal of Geophysical Research: Oceans, 88(14): 9671−9688.

    Google Scholar

    [36] Tardy Y. 1971. Characterization of the principal weathering types by the geochemistry of waters from some European and African crystalline massifs[J]. Chemical Geology, 7(4): 253−271. doi: 10.1016/0009-2541(71)90011-8

    CrossRef Google Scholar

    [37] Ta M M, Zhou X, Guo J, et al. 2020. The Evolution and Sources of Major Ions in Hot Springs in the Triassic Carbonates of Chongqing, China[J]. Water, 12(4): 1194. doi: 10.3390/w12041194

    CrossRef Google Scholar

    [38] Tang Y X, Lin J W, Li Y Y, et al. 2024. The occurrence regularity of deep geothermal resources in the northern of Binhai geothermal field, Tianjin[J]. North China Geology, 47(1): 77−84(in Chinese with English abstract).

    Google Scholar

    [39] Uliana M M, Sharp J M. 2001. Tracing regional flow paths to major springs in Trans−Pecos Texas using geochemical data and geochemical models[J]. Chemical Geology, 179(1): 53−72.

    Google Scholar

    [40] Wang Y P, Wang L, Xu C X, et al. 2010. Hydro−geochemistry and genesis of major ions in the Yangtze River, China[J]. Geological Bulletin of China, 29(2/3): 446−456(in Chinese with English abstract).

    Google Scholar

    [41] Wang M M. 2020. Hydrochemical and isotopic characteristics of geothermal water in the Rehai region in Tengchong of Yunnan[D]. Doctoral Thesis of China University of Geoscience (Beijing) (in Chinese with English abstract).

    Google Scholar

    [42] Wang X C, Sun H L, Yuan X F. 2022. A study of the hydrochemical characteristics and geothermal water of typical granite geothermal reservoir in the Jiaodong area[J]. Hydrogeology & Engineering Geology, 49(5): 186−194(in Chinese with English abstract).

    Google Scholar

    [43] Wang X J, Xu M J, Han X, et al. 2023. Study on Groundwater Cycle in Beijing Pinggu Basin Based on Isotopes and Hydrochemistry[J]. Northwest Geology, 56(5): 127−139(in Chinese with English abstract).

    Google Scholar

    [44] Wang B, Zong Z H, Xia Y B, et al. 2023. The characteristics of the main ion components of geothermal fluid and geothermal origin analysis in Tianjin[J]. North China Geology, 46(2): 9−16(in Chinese with English abstract).

    Google Scholar

    [45] Wu H Q, Yang Z D, Shu Q, et al. 2016. Distribution characteristics of geothermal resources in Anhui Province and their development and utilization suggestions[J]. Journal of Geology, 40(1): 171−177(in Chinese with English abstract).

    Google Scholar

    [46] Wu H Q, Li Q, Fan D W. 2019. Discussion of Petrological and Geochemical Characteristics and Formation of Xiangchang Super unit in Anhui Dabie Mountains[J]. Journal of Suzhou University, 34(9): 66−72(in Chinese with English abstract).

    Google Scholar

    [47] Wu J Y, Liu H, OuYang Y, et al. 2023. Hydrochemical Characteristics and Water Quality Assessment of Groundwater in Northern Foothill of Luoji Mountains[J]. Northwest Geology, 56(5): 151−164(in Chinese with English abstract).

    Google Scholar

    [48] Xi L, Chen K H, Huang X Q, et al. 2021. Hydrogeochemistry and origin of groundwater in the south coast of Hainan[J]. Geological Bulletin of China, 40(2/3): 350−363(in Chinese with English abstract).

    Google Scholar

    [49] Xu S T, Jiang L L. 1992. Tectonic framework and evolution of the Dabie Mountain in Anhui, eastern China[J]. Acta Geologica Sinica, 66(1): 1−14(in Chinese with English abstract).

    Google Scholar

    [50] Yang N, Wang G C, Shi Z, et al. 2018. Application of Multiple Approaches to Investigate the Hydrochemistry Evolution of Groundwater in an Arid Region: Nomhon, Northwestern China[J]. Water, 10(11): 1667. doi: 10.3390/w10111667

    CrossRef Google Scholar

    [51] Zhang R Q, Liang X, Jin M G, et al. 2018. The Fundamentals of Hydrogeology[M]. Beijing: Geological Publishing House (in Chinese).

    Google Scholar

    [52] Zhou Z Y, Liu S L, Liu J X. 2015. Study on the Characteristics and Development Strategies of Geothermal Resources in China[J]. Journal of Natural Resource, 30(7): 1210−1221(in Chinese with English abstract).

    Google Scholar

    [53] Zhou X, Jin X M, Liang S H, et al. 2017. Special Topics on Groundwater Sciences (the second editon) [M]. Beijing: Geological Publishing House(in Chinese).

    Google Scholar

    [54] Zhu X H, He Tao, Wu Q. 2020. Analyzing the causes of Tangwan Hot Spring in Taihu County, Anhui Province[J]. Western Resource, (4): 132−134(in Chinese).

    Google Scholar

    [55] 安徽省地质调查院. 2006. 安徽省太湖幅1∶25万区域地质调查[M]. 北京: 地质出版社.

    Google Scholar

    [56] 程长根, 杨立本. 2005. 安庆市地热水资源分布特征与开发利用初步研究[J]. 安徽地质, 15(3): 186−189. doi: 10.3969/j.issn.1005-6157.2005.03.005

    CrossRef Google Scholar

    [57] 刁天仁, 杜菲. 2019. 安徽省岳西县溪沸地热成因模式及地热资源评价[J]. 地下水, 41(6): 27−28,31.

    Google Scholar

    [58] 郭永海, 沈照理, 钟佐燊. 2002. 河北平原深层碱性淡水形成的水文地球化学模拟——以保定、沧州地区为例[J]. 地球科学, 27(2): 35−40.

    Google Scholar

    [59] 李状, 周训, 方斌, 等. 2022. 安徽大别山区温泉的水化学与同位素特征及成因[J]. 地质通报, 41(9): 1687−1697. doi: 10.12097/j.issn.1671-2552.2022.09.016

    CrossRef Google Scholar

    [60] 蔺文静, 刘志明, 王婉丽, 等. 2013. 中国地热资源及其潜力评估[J]. 中国地质, 40(1): 312−321. doi: 10.3969/j.issn.1000-3657.2013.01.021

    CrossRef Google Scholar

    [61] 刘海燕. 2018. 华北平原典型区地下水稀土元素的分布特征及其与铁、锰络合反应的模拟研究[D]. 中国地质大学(北京)博士学位论文.

    Google Scholar

    [62] 刘春雷, 李亚松, 洪炳义, 等. 2023. 福建盐田海水补给型地热系统地球化学特征及其成因[J]. 水文地质工程地质, 50(1): 158−167.

    Google Scholar

    [63] 钱会, 马致远, 李培月, 等. 2012. 水文地球化学[M]. 北京: 地质出版社.

    Google Scholar

    [64] 唐永香, 林建旺, 李嫄嫄, 等. 2024. 天津滨海地热田北部深部地热资源赋存规律[J]. 华北地质, 47(1): 77−84.

    Google Scholar

    [65] 王亚平, 王岚, 许春雪, 等. 2010. 长江水系水文地球化学特征及主要离子的化学成因[J]. 地质通报, 29(2/3): 446−456. doi: 10.3969/j.issn.1671-2552.2010.02.032

    CrossRef Google Scholar

    [66] 王蒙蒙. 2020. 云南腾冲市热海地区地下热水的水化学和同位素特征研究[D]. 中国地质大学(北京)博士学位论文.

    Google Scholar

    [67] 王晓翠, 孙海龙, 袁星芳. 2022. 胶东典型花岗岩热储地下热水水化学特征及热储研究[J]. 水文地质工程地质, 49(5): 186−194.

    Google Scholar

    [68] 王冰, 宗振海, 夏雨波, 等. 2023. 天津地区地热流体主要离子组分特征及地热成因分析[J]. 华北地质, 46(2): 9−16.

    Google Scholar

    [69] 王新娟, 许苗娟, 韩旭, 等. 2023. 基于同位素和水化学的北京平谷盆地地下水循环研究[J]. 西北地质, 56(5): 127−139. doi: 10.12401/j.nwg.2022037

    CrossRef Google Scholar

    [70] 吴海权, 杨则东, 疏浅, 等. 2016. 安徽省地热资源分布特征及开发利用建议[J]. 地质学刊, 40(1): 171−177. doi: 10.3969/j.issn.1674-3636.2016.01.171

    CrossRef Google Scholar

    [71] 吴海权, 李琴, 范董伟. 2019. 安徽大别山响肠超单元的岩石学和地球化学特征及成因探讨[J]. 宿州学院学报, 34(9): 66−72.

    Google Scholar

    [72] 吴君毅, 刘洪, 欧阳渊, 等. 2023. 螺髻山北麓地下水化学特征与水质评价[J]. 西北地质, 56(5): 151−164. doi: 10.12401/j.nwg.2023003

    CrossRef Google Scholar

    [73] 习龙, 陈科衡, 黄向青, 等. 2021. 海南南部沿海地下水水文地球化学及成因[J]. 地质通报, 40(2/3): 350−363.

    Google Scholar

    [74] 徐树桐, 江来利, 刘贻灿, 等. 1992. 大别山区(安徽部分)的构造格局和演化过程[J]. 地质学报, 66(1): 1−14.

    Google Scholar

    [75] 张人权, 梁杏, 靳孟贵, 等. 2018. 水文地质学基础(第七版)[M]. 北京: 地质出版社.

    Google Scholar

    [76] 中国地质调查局. 2012. 水文地质手册[M]. 北京: 地质出版社.

    Google Scholar

    [77] 中华人民共和国卫生部. 2006. 生活饮用水卫生标准(GB 5749-2006)[S]. 北京: 中国标准出版社.

    Google Scholar

    [78] 中华人民共和国国家质量监督检验检疫总局, 国家标准化管理委员会. 2016. 天然矿泉水资源地质勘查规范(GB/T 13727—2016)[S]. 北京: 中国标准出版社.

    Google Scholar

    [79] 中华人民共和国卫生部, 国家标准化管理委员会. 2018. 食品安全国家标准 饮用天然矿泉水标准(GB 8537—2018)[S]. 北京: 中国标准出版社.

    Google Scholar

    [80] 周训, 金晓媚, 梁四海, 等. 2017. 地下水科学专论(第二版)[M]. 北京: 地质出版社.

    Google Scholar

    [81] 周总瑛, 刘世良, 刘金侠. 2015. 中国地热资源特点与发展对策[J]. 自然资源学报, 30(7): 1210−1221.

    Google Scholar

    [82] 朱训和, 何涛, 吴琼. 2020. 解析安徽省太湖县汤湾温泉成因[J]. 西部资源, (4): 132−134.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(3)

Article Metrics

Article views(236) PDF downloads(71) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint