| Citation: | DAI Xiangqian, WANG Chenghu, GAO Guiyun, YANG Xinshuai, LIU Jikun. 2025. High in-situ stress evaluation and disaster case analysis for the Sichuan–Xizang railway. Journal of Geomechanics, 31(3): 458-474. doi: 10.12090/j.issn.1006-6616.2025021 |
The challenges posed by high in-situ stress along the newly constructed Sichuan–Xizang railway are significant, characterized by frequent catastrophic events such as rock bursts and large deformations in soft rocks, which substantially impact tunnel construction for the Sichuan–Xizang railway.
Based on 366 sets of in-situ stress measurement data from the Yalin section of the Sichuan–Xizang railway and 28 documented cases of tunnel catastrophes in the areas along the Sichuan–Xizang railway, this study analyzes the characteristics of in-situ stress along the route, categorizes the catastrophic events, and evaluates the high in-situ stress conditions of the Sichuan–Xizang railway.
In the B218, B219, and B222 stress divisions traversed by the Yalin section of the Sichuan–Xizang railway, the maximum (SH) and minimum (Sh) horizontal principal stresses increase with depth. Within a burial depth of 1000 m, SH and Sh range from 30.80–37.50 MPa and 21.40–23.56 MPa, respectively. At a burial depth of 2500 m, SH and Sh increase to 69.80–90.0 MPa and 48.40–56.56 MPa, respectively. The preferred orientations of SH are NWW, NW, and NE, consistent with focal mechanism solutions, albeit with some local deviations. The lateral pressure coefficient (kH/kh) is generally greater than 1, indicating that the Sichuan–Xizang railway is predominantly influenced by SH. Stress values in each stress division exhibit the pattern SH > SV > Sh, reflecting a strike-slip fault stress state in the deeper regions below 500 m burial depth. The stress accumulation level (μm) values for each stress division are concentrated around 0.3, suggesting a low regional stress accumulation level. Among the 28 documented tunnel catastrophe cases (12 involving rock bursts and 16 involving large deformations in soft rocks), the minimum burial depth for tunnels experiencing rock bursts is 700 m, while the minimum burial depth for tunnels experiencing large deformations in soft rocks is 275 m. Six tunnels are rated as under high stresses, and eight tunnels are rated as under extremely high stresses. High in-situ stress serves as the energy source and the fundamental cause of frequent catastrophes.
Through comparing the actual grades of tunnel disasters, the most appropriate criterion for predicting rock burst and large deformations in Sichuan–Xizang railway tunnels is determined after comparison and selection. Therefore, they should be prioritized in the studies for the subsequent construction of Sichuan–Xizang railway tunnels as a reference basis. [Significance] The research findings offer crucial evidence for the analysis of in-situ stress states and the prevention and control of high in-situ stress disasters in the regions along the Sichuan–Xizang railway, and possess significant engineering guiding significance for enhancing the safety of tunnel engineering and construction efficiency.
| [1] | CHANG S P, 2021. Engineering geological study on route selection of Tongmai to Lulang section of Sichuan-Xizang railway[J]. Tunnel Construction, 41(6): 988. (in Chinese with English abstract |
| [2] | CHEN X Q, 2022. Influence of fault fracture zone on initial in-situ stress field in Tongmai tunnel of Sichuan-Xizang traffic corridor[J]. Earth Science, 47(6): 2120-2129. (in Chinese with English abstract |
| [3] | CHEN Z C, 2017. The rock burst prediction and prevention measure of Lalin railway gneiss tunnel[J]. Shanxi Architecture, 43(14): 165-166. (in Chinese) |
| [4] | CHENG G, GONG L, YU J W, et al., 2020. Study on large deformation characteristics and construction control technology in high altitude slate tunnel[J]. Chinese Journal of Underground Space and Engineering, 16(S2): 744-751. (in Chinese with English abstract |
| [5] | DING L, ZHONG D L, 2013. Evolution of the East Himalayan tectonic syntaxis since the collision between the Indian and Eurasian plates[J]. Chinese Journal of Geology, 48(2): 317-333. (in Chinese with English abstract |
| [6] | DING X L, ZHANG Y T, HUANG S L, et al., 2023. Large deformation mechanism of surrounding rock masses of tunnels, prediction method of squeezing large deformation and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 42(3): 521-544. (in Chinese with English abstract |
| [7] | FAN Y L, CAO J W, YU S, et al., 2023. Prediction and analysis on large deformation of surrounding rocks in the Muzhailing Tunnel of the Weiyuan–Wudu Expressway under high in-situ stress[J]. Journal of Geomechanics, 29(6): 786-800. (in Chinese with English abstract |
| [8] | FU T T, 2022. Comparative Study on Excavation Methods of Langzhen No. 2 Soft Rock Tunnel[D]. Lhasa: Xizang University. (in Chinese with English abstract |
| [9] | GAO Y, 2020. Quality control of initial support construction for large deformation of weak surrounding rock[J]. Construction Machinery & Maintenance(4): 94-95. (in Chinese) |
| [10] | GOEL R K, JETHWA J L, DHAR B B, 1996. Effect of tunnel size on support pressure[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 33(7): 749-755. |
| [11] | GONG F Q, DAI J H, WANG M Y, et al., 2022. “Strength & stress” coupling criterion and its grading standard for high geostress[J]. Journal of Engineering Geology, 30(6): 1893-1913. (in Chinese with English abstract |
| [12] | GONG H J, ZHAO G P, YAN J, et al., 2021. Characteristics and influencing factors of large deformation of Ailashan tunnel of Sichuan-Xizang highway[J]. Tunnel Construction, 41(S2): 129-136. (in Chinese with English abstract |
| [13] | GONG J H, SUN X, 2019. Reinforcement technology for high-steep natural slope at tunnel portal of Sichuan-Xizang railway[J]. Sichuan Architecture, 39(3): 78-80. (in Chinese) |
| [14] | GU L X, 2017. Study on deformation control technology of high stress soft rock large deformation tunnel[D]. Chongqing: Chongqing Jiaotong University. (in Chinese with English abstract |
| [15] | JETHWA J L, SINGH B, SINGH B, et al. , 1984. Estimation of ultimate rock pressure for tunnel linings under squeezing rock conditions—A new approach[C]//Proceedings of the design and performance of underground excavations. Cambridge: ISRM Symposium: 231-238. |
| [16] | LIAO X, LÜ G J, CHEN S K, et al., 2024. Study on distribution characteristics and influencing factors of in-situ stress field in Gonjo region of eastern Xizang[J]. Progress in Geophysics, 39(3): 938-950. (in Chinese with English abstract |
| [17] | LIU Z C, ZHU Y Q, LI W J, et al., 2008. Mechanism and classification criterion for large deformation of squeezing ground tunnels[J]. Chinese Journal of Geotechnical Engineering, 30(5): 690-697. (in Chinese with English abstract |
| [18] | LIU Z Y, WANG C H, XU X, et al., 2017. Slip tendency analysis of the mid-segment of Tan-Lu fault belt based on stress measurements[J]. Modern Geology, 31(4): 869-876. (in Chinese with English abstract |
| [19] | MIAO Y W, 2018. Construction technology research on large deformation of Zangga tunnel surrounding rock[J]. High Speed Railway Technology, 9(S2): 127-133. (in Chinese) |
| [20] | National Railway Administration, 2016. Code for Design of Railway Tunnels: TB 10003—2016 [S]. Beijing: China Railway Publishing House. (in Chinese) |
| [21] | National Railway Administration, 2022. Code for Investigation of Adverse Geology in Railway Engineering: TB/T 10027—2022 [S]. Beijing: China Railway Publishing House. (in Chinese) |
| [22] | REN Y, WANG D, LI T B, et al., 2021. In-situ geostress characteristics and engineering effect in Ya’an-Xinduqiao section of Sichuan—Xizang railway[J]. Chinese Journal of Rock Mechanics and Engineering, 40(1): 65-76. (in Chinese with English abstract |
| [23] | SUN W F, GUO C B, ZHANG G Z, et al., 2021. In-situ stress measurement of Guodashan tunnel horizontal borehole in West Sichuan and the engineering significance[J]. Geoscience, 35(1): 126-136. (in Chinese with English abstract |
| [24] | TAN C X, ZHANG P, WANG J M, et al., 2023. Considerations on the application of in-situ stress measurement and real-time monitoring in deep underground engineering in strong tectonic activity region[J]. Journal of Geomechanics, 29(6): 757-769. (in Chinese with English abstract |
| [25] | TAO Q, 2023. Stability control of high geo-stress soft rock tunnels considering rock expansion effect: a case study of Milin tunnel[J]. Tunnel Construction, 43(8): 1327-1337. (in Chinese with English abstract |
| [26] | TAO W, 2016. Characteristics of rockburst and prevention measures in New Erlangshan Tunnel[J]. Sichuan Architecture, 36(2): 264-265. (in Chinese with English abstract |
| [27] | TIAN C Y, LAN H X, ZHANG N, et al., 2022. Quantitative prediction of rockburst risk in sejila tunel of one railway[J]. Journal of Engineering Geology, 30(3): 621-634, doi: 10.13544/j.cnki.jeg.2022-0113 |
| [28] | TIAN S M, WANG W, TANG G R, et al., 2021. Study on countermeasures for major unfavorable geological issues of tunnels on Sichuan-Xizang railway[J]. Tunnel Construction, 41(5): 697-712. (in Chinese with English abstract |
| [29] | WANG C H, SHA P, HU Y F, et al., 2011. Study of squeezing deformation problems during tunneling[J]. Rock and Soil Mechanics, 32(S2): 143-147. (in Chinese with English abstract |
| [30] | WANG C H, DING L F, LI F Q, et al., 2012. Characteristics of in-situ stress measurement in northwest Sichuan basin with timespan of 23 years and its crustal dynamics significance[J]. Chinese Journal of Rock Mechanics and Engineering, 31(11): 2171-2181. (in Chinese with English abstract |
| [31] | WANG C H, SONG C K, GUO Q L, et al., 2014a. Stress build-up in the shallow crust before the Lushan Earthquake based on the in-situ stress measurements[J]. Chinese Journal of Geophysics, 57(1): 102-114. (in Chinese with English abstract |
| [32] | WANG C H, XING B R, CHEN Y Q, 2014b. Prediction of stress field of super-long deep-buried tunnel area and case analysis[J]. Chinese Journal of Geotechnical Engineering, 36(5): 955-960. (in Chinese with English abstract |
| [33] | WANG C H, GAO G Y, YANG S X, et al., 2019. Analysis and prediction of stress fields of Sichuan—Xizang railway area based on contemporary tectonic stress field zoning in Western China[J]. Chinese Journal of Rock Mechanics and Engineering, 38(11): 2242-2253. (in Chinese with English abstract |
| [34] | WANG D, LI T B, JIANG L W, et al., 2017. Analysis of the stress characteristics and rock burst of ultra deep buried tunnel in Sichuan-Xizang railway[J]. Journal of Railway Engineering Society, 34(4): 46-50. (in Chinese with English abstract |
| [35] | WANG L X, 2023. Research on tunnel construction technology in high altitude and high stress areas[J]. Value Engineering, 42(13): 31-33. (in Chinese with English abstract |
| [36] | WANG Y, AI Y X, 2017. Reason analysis and treatment measures for the slip collapse of Zangrila tunnel crossing moraine body[J]. Subgrade Engineering(2): 220-224. (in Chinese) |
| [37] | WU S S, 2020. Study on large deformation classification of Changdu tunnel of Sichuan-Xizang railway[D]. Chengdu: Southwest Jiaotong University. (in Chinese with English abstract |
| [38] | XIE F R, CUI X F, ZHAO J T, et al., 2004. Regional division of the recent tectonic stress field in China and adjacent areas[J]. Chinese Journal of Geophysics, 47(4): 654-662. (in Chinese with English abstract |
| [39] | XIE F R, CHEN Q C, CUI X F, et al., 2007. Fundamental database of crustal stress environment in continental China[J]. Progress in Geophysics, 22(1): 131-136. (in Chinese with English abstract |
| [40] | XU J S, WANG J X, CHEN X Q, et al., 2022. Effects of Poisson ratio on in-situ stress field near the Jiali fault along the Sichuan-Xizang railway[J]. Earth Science, 47(3): 818-830. (in Chinese with English abstract |
| [41] | XU L S, WANG L S, 1999. Study on the laws of rockburst and its forecasting in the tunnel of Erlang mountain road[J]. Chinese Journal of Geotechnical Engineering, 21(5): 569-572. (in Chinese with English abstract |
| [42] | XU Z X, MENG W, GUO C B, et al., 2021a. In-situ stress measurement and its application of a deep-buried tunnel in Zheduo mountain, West Sichuan[J]. Geoscience, 35(1): 114-125. (in Chinese with English abstract |
| [43] | XU Z X, ZHANG L G, JIANG L W, et al., 2021b. Engineering geological environment and main engineering geological problems of Ya’an-Linzhi section of the Sichuan—Xizang railway[J]. Advanced Engineering Sciences, 53(3): 29-42. (in Chinese with English abstract |
| [44] | XUE Y G, KONG F M, YANG W M, et al., 2020. Main unfavorable geological conditions and engineering geological problems along Sichuan-Xizang railway[J]. Chinese Journal of Rock Mechanics and Engineering, 39(3): 445-468. (in Chinese with English abstract |
| [45] | YAN J, HE C, WANG B, et al., 2019. Inoculation and characters of rockbursts in extra-long and deep-lying tunnels located on Yarlung Zangbo suture[J]. Chinese Journal of Rock Mechanics and Engineering, 38(4): 769-781. (in Chinese with English abstract |
| [46] | YANG S X, YAO R, CUI X F, et al., 2012. Analysis of measured stress characteristics in the Chinese mainland, active blocks, and North-South Seismic Belt[J]. Chinese Journal of Geophysics, 55(12): 4207-4217. (in Chinese with English abstract |
| [47] | YANG Y H. 2017. The dynamics of eastern Xizang from focal mechanism and seismic anisotropy[D]. Chengdu: Chengdu University of Technology. (in Chinese with English abstract |
| [48] | ZHANG C Y, DU S H, HE M C, et al., 2022. Characteristics of in-situ stresses on the western margin of the eastern Himalayan syntaxis and its influence on stability of tunnel surrounding rock[J]. Chinese Journal of Rock Mechanics and Engineering, 41(5): 954-968. (in Chinese with English abstract |
| [49] | ZHANG J B, 2021. Research on classification of rockburst intensity and criterion of stress intensity for LASA to Linzhi railway tunnel[D]. Chengdu: Southwest Jiaotong University. (in Chinese with English abstract |
| [50] | ZHANG J J, FU B J, 2008. Rockburst and its criteria and control[J]. Chinese Journal of Rock Mechanics and Engineering, 27(10): 2034-2042. (in Chinese with English abstract |
| [51] | ZHANG P, QU Y M, GUO C B, et al., 2017. Analysis of in-situ stress measurement and real-time monitoring results in Nyching of Xizang Plateau and its response to Nepal MS8.1 earthquake[J]. Geoscience, 31(5): 900-910. (in Chinese with English abstract |
| [52] | ZHANG R G, 2022. Research on construction quality control of soft rock large deformation tunnel[J]. Journal of Guangdong Communication Polytechnic, 21(2): 12-17. (in Chinese with English abstract |
| [53] | ZHANG S A, WU M L, JIANG J, et al., 2024. Analysis of rockburst criteria based on measured data of in-situ stress during tunnel construction[J]. Journal of Disaster Prevention and Mitigation, 40(3): 1-9. (in Chinese with English abstract |
| [54] | ZHANG X J, ZHANG G, 2023. Study on construction treatment measures for soft rock large deformation in tunnels of the Western Sichuan Plateau[J]. Modern Transportation Technology, 20(2): 54-58, 70. (in Chinese with English abstract |
| [55] | ZHAO Y, 2021. Study on mechanical properties and deformation control of layered surrounding rock of deep buried tunnel[D]. Huainan: Anhui University of Science and Technology. (in Chinese with English abstract |
| [56] | ZHENG Z X, SUN Q Q, 2017. Tunnel engineering of Sichuan-Xizang railway[J]. Tunnel Construction, 37(8): 1049-1054. (in Chinese with English abstract |
| [57] | ZHONG Y, LIU Y, ZHENG Z Q, 2009. Comprehensive treatment technology for large deformation of surrounding rock in Sichuan-Xizang road tunnels[J]. Southwest Highway, (4): 129-132. (in Chinese with English abstract |
| [58] | 常帅鹏,2021. 川藏铁路通麦至鲁朗段选线工程地质研究[J]. 隧道建设(中英文),41(6):988. |
| [59] | 陈兴强,2022. 断层破碎带对川藏交通廊道通麦隧道初始地应力场影响[J]. 地球科学,47(6):2120-2129. doi: 10.3321/j.issn.1000-2383.2022.6.dqkx202206017 |
| [60] | 陈志春,2017. 拉林铁路片麻岩隧道岩爆预测及防治措施[J]. 山西建筑,43(14):165-166. doi: 10.3969/j.issn.1009-6825.2017.14.090 |
| [61] | 程刚,龚伦,俞景文,等,2020. 高海拔板岩隧道大变形特性及控制技术研究[J]. 地下空间与工程学报,16(S2):744-751. |
| [62] | 丁林,钟大赉,2013. 印度与欧亚板块碰撞以来东喜马拉雅构造结的演化[J]. 地质科学,48(2):317-333. |
| [63] | 丁秀丽,张雨霆,黄书岭,等,2023. 隧洞围岩大变形机制、挤压大变形预测及应用[J]. 岩石力学与工程学报,42(3):521-544. |
| [64] | 范玉璐,曹佳文,余顺,等,2023. 高地应力作用下渭武高速木寨岭隧道围岩大变形灾变预测分析研究[J]. 地质力学学报,29(6):786-800. doi: 10.12090/j.issn.1006-6616.2022110 |
| [65] | 傅甜甜,2022. 朗镇二号软岩隧道开挖工法对比研究[D]. 拉萨:西藏大学. |
| [66] | 高阳,2020. 软弱围岩大变形初期支护施工质量控制[J]. 工程机械与维修(4):94-95. |
| [67] | 宫凤强,代金豪,王明洋,等,2022. 高地应力“强度&应力”耦合判据及其分级标准[J]. 工程地质学报,30(6):1893-1913. |
| [68] | 龚海军,赵耿鹏,严健,等,2021. 川藏公路矮拉山隧道大变形特征及其影响因素分析[J]. 隧道建设(中英文),41(S2):129-136. |
| [69] | 龚建辉,孙晓,2019. 川藏铁路隧道洞口高陡自然边坡加固技术[J]. 四川建筑,39(3):78-80. doi: 10.3969/j.issn.1007-8983.2019.03.028 |
| [70] | 辜良仙,2017. 高地应力软岩大变形隧道变形控制技术研究[D]. 重庆:重庆交通大学. |
| [71] | 国家铁路局,2016. 铁路隧道设计规范:TB 10003—2016[S]. 北京:中国铁道出版 社. |
| [72] | 国家铁路局,2022. 铁路工程不良地质勘察规程:TB/T 10027—2022[S]. 北京:中国铁道出版社. |
| [73] | 廖昕,吕改杰,陈仕阔,等,2024. 藏东贡觉地区地应力场分布特征及影响因素研究[J]. 地球物理学进展,39(3):938-950. doi: 10.6038/pg2024HH0255 |
| [74] | 刘志春,朱永全,李文江,等,2008. 挤压性围岩隧道大变形机理及分级标准研究[J]. 岩土工程学报,30(5):690-697. doi: 10.3321/j.issn:1000-4548.2008.05.012 |
| [75] | 刘卓岩,王成虎,徐鑫,等,2017. 基于地应力实测数据分析郯庐断裂带中段滑动趋势[J]. 现代地质,31(4):869-876. doi: 10.3969/j.issn.1000-8527.2017.04.021 |
| [76] | 苗永旺,2018. 藏噶隧道围岩大变形施工技术研究[J]. 高速铁路技术,9(S2):127-133. |
| [77] | 任洋,王栋,李天斌,等,2021. 川藏铁路雅安至新都桥段地应力特征及工程效应分析[J]. 岩石力学与工程学报,40(1):65-76. |
| [78] | 孙炜锋,郭长宝,张广泽,等,2021. 川西郭达山隧道水平孔地应力测量与工程意义[J]. 现代地质,35(1):126-136. |
| [79] | 谭成轩,张鹏,王继明,等,2023. 原位地应力测量与实时监测在强构造活动区深埋地下工程中应用的思考[J]. 地质力学学报,29(6):757-769. doi: 10.12090/j.issn.1006-6616.2023122 |
| [80] | 陶琦,2023. 考虑岩体膨胀效应的高地应力软岩隧道稳定性控制研究:以米林隧道为例[J]. 隧道建设(中英文),43(8):1327-1337. |
| [81] | 陶伟,2016. 新二郎山隧道岩爆特征与防治经验总结[J]. 四川建筑,36(2):264-265. doi: 10.3969/j.issn.1007-8983.2016.02.094 |
| [82] | 田朝阳,兰恒星,张宁,等,2022. 某交通线路色季拉山隧道高地应力岩爆风险定量预测研究[J]. 工程地质学报,30(3):621-634, doi: 10.13544/j.cnki.jeg.2022-0113. |
| [83] | 田四明,王伟,唐国荣,等,2021. 川藏铁路隧道工程重大不良地质应对方案探讨[J]. 隧道建设(中英文),41(5):697-712. |
| [84] | 王成虎,沙鹏,胡元芳,等,2011. 隧道围岩挤压变形问题探究[J]. 岩土力学,32(S2):143-147. |
| [85] | 王成虎,丁立丰,李方全,等,2012. 川西北跨度23a的原地应力实测数据特征及其地壳动力学意义分析[J]. 岩石力学与工程学报,31(11):2171-2181. doi: 10.3969/j.issn.1000-6915.2012.11.004 |
| [86] | 王成虎,宋成科,郭启良,等,2014a. 利用原地应力实测资料分析芦山地震震前浅部地壳应力积累[J]. 地球物理学报,57(1):102-114. |
| [87] | 王成虎,邢博瑞,陈永前,2014b. 长大深埋隧道工程区地应力状态预测与实例分析[J]. 岩土工程学报,36(5):955-960. |
| [88] | 王成虎,高桂云,杨树新,等,2019. 基于中国西部构造应力分区的川藏铁路沿线地应力的状态分析与预估[J]. 岩石力学与工程学报,38(11):2242-2253. |
| [89] | 王栋,李天斌,蒋良文,等,2017. 川藏铁路某超深埋隧道地应力特征及岩爆分析[J]. 铁道工程学报,34(4):46-50. doi: 10.3969/j.issn.1006-2106.2017.04.010 |
| [90] | 王刘勋,2023. 高海拔高应力地区隧道施工工艺技术研究[J]. 价值工程,42(13):31-33. doi: 10.3969/j.issn.1006-4311.2023.13.009 |
| [91] | 王勇,艾永祥,2017. 藏日拉隧道穿越冰碛体掌子面发生溜坍原因分析及处治措施[J]. 路基工程(2):220-224. |
| [92] | 巫升山,2020. 川藏铁路昌都隧道大变形分级研究[D]. 成都:西南交通大学. |
| [93] | 谢富仁,崔效锋,赵建涛,等,2004. 中国大陆及邻区现代构造应力场分区[J]. 地球物理学报,47(4):654-662. doi: 10.3321/j.issn:0001-5733.2004.04.016 |
| [94] | 谢富仁,陈群策,崔效锋,等,2007. 中国大陆地壳应力环境基础数据库[J]. 地球物理学进展,22(1):131-136. doi: 10.3969/j.issn.1004-2903.2007.01.018 |
| [95] | 许俊闪,王建新,陈兴强,等,2022. 泊松比对川藏铁路嘉黎断裂附近地应力场的影响[J]. 地球科学,47(3):818-830. doi: 10.3321/j.issn.1000-2383.2022.3.dqkx202203006 |
| [96] | 徐林生,王兰生,1999. 二郎山公路隧道岩爆发生规律与岩爆预测研究[J]. 岩土工程学报,21(5):569-572. doi: 10.3321/j.issn:1000-4548.1999.05.009 |
| [97] | 徐正宣,孟文,郭长宝,等,2021a. 川西折多山某深埋隧道地应力测量及其应用研究[J]. 现代地质,35(1):114-125. |
| [98] | 徐正宣,张利国,蒋良文,等,2021b. 川藏铁路雅安至林芝段工程地质环境及主要工程地质问题[J]. 工程科学与技术,53(3):29-42. |
| [99] | 薛翊国,孔凡猛,杨为民,等,2020. 川藏铁路沿线主要不良地质条件与工程地质问题[J]. 岩石力学与工程学报,39(3):445-468. |
| [100] | 严健,何川,汪波,等,2019. 雅鲁藏布江缝合带深埋长大隧道群岩爆孕育及特征[J]. 岩石力学与工程学报,38(4):769-781. |
| [101] | 杨树新,姚瑞,崔效锋,等.,2012. 中国大陆与各活动地块、南北地震带实测应力特征分析[J]. 地球物理学报,55(12):4207-4217. doi: 10.6038/j.issn.0001-5733.2012.12.032 |
| [102] | 杨宜海,2017. 用地震震源机制和各向异性研究青藏高原东缘动力学特征[D]. 成都:成都理工大学. |
| [103] | 张重远,杜世回,何满潮,等,2022. 喜马拉雅东构造结西缘地应力特征及其对隧道围岩稳定性的影响[J]. 岩石力学与工程学报,41(5):954-968. |
| [104] | 张镜剑,傅冰骏,2008. 岩爆及其判据和防治[J]. 岩石力学与工程学报,27(10):2034-2042. doi: 10.3321/j.issn:1000-6915.2008.10.010 |
| [105] | 张钧博,2021. 拉萨至林芝铁路隧道岩爆烈度分级与应力强度判据标准研究[D]. 成都:西南交通大学. |
| [106] | 张鹏,曲亚明,郭长宝,等,2017. 西藏林芝地应力测量监测与尼泊尔MS8.1级强震远场响应分析[J]. 现代地质,31(5):900-910. doi: 10.3969/j.issn.1000-8527.2017.05.003 |
| [107] | 张瑞国,2022. 软岩大变形隧道施工质量控制研究[J]. 广东交通职业技术学院学报,21(2):12-17. doi: 10.3969/j.issn.1671-8496.2022.02.003 |
| [108] | 张士安,吴满路,江蛟,等,2024. 基于隧道施工阶段地应力实测数据的岩爆判据研究[J]. 防灾减灾学报,40(3):1-9. |
| [109] | 张晓军,张贵,2023. 川西高原隧道软岩大变形施工处治措施研究[J]. 现代交通技术,20(2):54-58,70. doi: 10.3969/j.issn.1672-9889.2023.02.011 |
| [110] | 赵煜,2021. 深埋隧道层状围岩力学特性及变形防控研究[D]. 淮南:安徽理工大学. |
| [111] | 郑宗溪,孙其清,2017. 川藏铁路隧道工程[J]. 隧道建设,37(8):1049-1054. |
| [112] | 钟勇,刘勇,郑仲钦,2009. 川藏路隧道围岩大变形综合处治技术[J]. 西南公路,(4):129-132. |
Stress division and stress measurement locations along the Sichuan-Xizang railway
Variation of principal stress values with burial depth in different stress division
Orientation of maximum horizontal principal stress based on measured data in different stress division
Orientation of maximum horizontal principal stress based on focal mechanism solutions in different stress division
Variation of lateral pressure coefficients with burial depth in different stress division
Stress accumulation level (μm) values in different stress division
Location map of catastrophic tunnels in the Sichuan-Xizang railway